
www.manaraa.com

University of Iowa University of Iowa 

Iowa Research Online Iowa Research Online 

Theses and Dissertations 

Spring 2016 

Essays in economic theory Essays in economic theory 

Wei He 
University of Iowa 

Follow this and additional works at: https://ir.uiowa.edu/etd 

 Part of the Economics Commons 

Copyright 2016 Wei He 

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/3098 

Recommended Citation Recommended Citation 
He, Wei. "Essays in economic theory." PhD (Doctor of Philosophy) thesis, University of Iowa, 2016. 
https://doi.org/10.17077/etd.ec2xxjwf 

Follow this and additional works at: https://ir.uiowa.edu/etd 

 Part of the Economics Commons 

https://ir.uiowa.edu/
https://ir.uiowa.edu/etd
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3098&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=ir.uiowa.edu%2Fetd%2F3098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17077/etd.ec2xxjwf
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F3098&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=ir.uiowa.edu%2Fetd%2F3098&utm_medium=PDF&utm_campaign=PDFCoverPages


www.manaraa.com

ESSAYS IN ECONOMIC THEORY

by

Wei He

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Economics
in the Graduate College of

The University of Iowa

May 2016

Thesis Supervisor: Professor Nicholas Yannelis



www.manaraa.com

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Wei He

has been approved by the Examining Committee for the
thesis requirement for the Doctor of Philosophy degree
in Economics at the May 2016 graduation.

Thesis Committee:

Nicholas Yannelis, Thesis Supervisor

Rabah Amir

Anne Villamil

Luciano de Castro

Kyungmin Kim



www.manaraa.com

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Nicholas Yan-

nelis, for his invaluable guidance throughout my graduate studies. Without his contin-

uous guidance, encouragement and help, what I have achieved would not be possible.

I am grateful to the rest of my professors, especially the members in my thesis

committee, for their instruction, motivation, feedback, and advice. I have also ben-

efited and learnt a lot from Yeneng Sun, who gave valuable advices on my research

projects.

Finally, I thank my family and friends for their essential help. In particular, my

deepest appreciation is due to my wife for her unconditional love and whole hearted

support.

ii



www.manaraa.com

ABSTRACT

This thesis is composed of three chapters. Chapter 1 considers the existence of

equilibria in games with complete information, where players may have non-ordered

and discontinuous preferences. Chapter 2 studies the issues on the existence of pure

and behavioral strategy equilibria in games with incomplete information and discon-

tinuous payoffs. We consider the standard setting with Bayesian preferences as well

as the case in which players may face ambiguity. Chapter 3 extends the classical

results on the Walras-core existence and equivalence to an ambiguous asymmetric in-

formation economy, where agents maximize maximin expected utilities (MEU). These

results are based on the papers He and Yannelis (2014, 2015a,b,c, 2016a,b).

In the first chapter, we propose the condition of “continuous inclusion prop-

erty” to handle the difficulty of discontinuous payoffs in various general equilibrium

and game theory models. Such discontinuities arise naturally in economic situations,

including auction, price competition of firms and also patent races. Based on the

continuous inclusion property, we establish the equilibrium existence result in a very

general framework with discontinuous payoffs. On one hand, this condition is suffi-

ciently general from the methodological point of view, as it unifies almost all special

conditions proposed in the literature. On the other hand, our condition is also po-

tentially useful from the realistic point of view, as it could be applied to deal with

many economic models which cannot be studied before because of the presence of the

discontinuity.

iii
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In the second chapter, I study the existence problem of pure and behavioral

strategy equilibria in discontinuous games with incomplete information. The frame-

work of games with incomplete information is standard as in the literature, except

for that we allow players’ payoffs to be discontinuous. We illustrate by examples

that the Bayesian equilibria may not exist in such games and the previous results are

not applicable to handle this problem. We propose some general conditions to retain

the existence of both pure strategy and behavioral strategy Bayesian equilibrium,

and show that our condition is tight. In addition, we study the equilibrium exis-

tence problem in discontinuous games under incomplete information and ambiguity,

and show that the maximin framework solves the equilibrium existence issue without

introducing any additional condition.

In the last chapter, I study a general equilibrium model with incomplete in-

formation by adopting the maximin expected utilities. The model is powerful enough

to describe the behaviors of ambiguity averse agents that cannot be explained by the

standard assumption of subjective expected utilities. I use this new formulation to

extend many classical results in general equilibrium theory by incorporating ambi-

guity into the model. In addition, the desirable incentive compatibility property is

shown in our model with maximin expected utilities, while this property will typ-

ically fail in the traditional setup. Specifically, the existence results are shown for

various equilibrium notions in a general equilibrium model, and the incentives can be

guaranteed when all agents use the maximin expected utilities.

iv
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PUBLIC ABSTRACT

This thesis contributes to economic theory on economies and games with dis-

continuous payoffs and ambiguity. In Chapter 1, we consider economic environments

with complete information, where agents’ payoffs may exhibit discontinuities. To han-

dle this difficulty, we propose the condition of “continuous inclusion property”, and

prove the existence of equilibria in a very general framework. Chapter 2 addresses

the issues on the existence of pure and behavioral strategy equilibria in games with

incomplete information and discontinuous payoffs. We provide several examples to

show that a Bayesian equilibrium may not exist and previous results are not directly

applicable. We introduce some general conditions to retain the existence of both

pure strategy and behavioral strategy Bayesian equilibria, and apply our results to

analyze all-pay auctions with general tie-breaking rules. Chapter 3 studies a general

equilibrium model with incomplete information and ambiguity aversion. We assume

that agents adopt the maximin preferences, and show the existence of maximin ex-

pectations equilibrium and maximin core. Importantly, we prove that the desirable

incentive compatibility property can be guaranteed for efficient allocations, which

typically fails in the conventional approach.

v
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1

CHAPTER 1
DISCONTINUOUS GAMES AND ECONOMIES WITH COMPLETE

INFORMATION

1.1 Introduction

The classical equilibrium existence theorems of Nash (1950), Debreu (1952),

Arrow and Debreu (1954) and McKenzie (1954) have been generalized to games/abstract

economies where agents’ preferences need not be transitive or complete, and there-

fore need not be representable by utility functions.1 The need to drop the transitiv-

ity assumption from equilibrium theory was motivated by behavioral/experimental

works which demonstrate that consumers do not necessarily behave in a transitive

way. A different line of literature pioneered by Dasgupta and Maskin (1986) and

Reny (1999) necessitated the need to drop the continuity assumption on the payoff

function of each agent. Their works were motivated by many realistic applications

(for example, Bertrand competition and auctions), and generalizations of the Nash-

Debreu equilibrium existence theorems were obtained where payoff functions need

not be continuous. In other words, a new literature emerged on equilibrium existence

theorems with discontinuous payoffs.2

1See for example, Mas-Colell (1974), Shafer and Sonnenschein (1975), Gale and Mas-
Colell (1975), Borglin and Keiding (1976), Shafer (1976), Yannelis and Prabhakar (1983),
and Wu and Shen (1996) among others.

2A number of authors have extended their results in different directions; see, for ex-
ample, Lebrun (1996), Bagh and Jofre (2006), Monteiro and Page (2007), Bich (2009),
Carbonell-Nicolau (2011), de Castro (2011), Carmona (2011b, 2014), He and Yannelis (2014,
2015a), Carmona and Podczeck (2015), Prokopovych (2011, 2015), Prokopovych and Yan-
nelis (2014), Reny (1999, 2011, 2015a), Nessah and Tian (2015), and Scalzo (2011, 2015a).
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The aim of this chapter is to provide new existence results for discontinuous

games and economies. Towards this end, we introduce the notion of “continuous

inclusion property”. The correspondences satisfying the continuous inclusion property

could be neither lower nor upper hemicontinuous, actually they may be discontinuous.

The continuous inclusion property is a very weak condition in the sense that any

correspondence, which has either an open graph, or open lower sections, or the local

intersection property, or it is upper hemicontinuous, will automatically satisfy this

property.

Firstly, we obtain an extension of the fixed point theorems of Fan (1952) and

Glicksberg (1952), which also generalizes the Browder (1968)’s fixed point theorem

in locally convex spaces. In addition, we substantially generalize the fixed point

theorem of Gale and Mas-Colell (1975). We also (1) show the nonemptiness of demand

correspondences for non-ordered and discontinuous preferences, which generalizes the

theorem of Sonnenschein (1971), and (2) prove the existence of Nash equilibrium for

discontinuous games with non-ordered preferences, which extends the results in Reny

(1999) to the setting with non-ordered preferences.

Secondly, we generalize the equilibrium existence theorems of Shafer and Son-

nenschein (1975) and Yannelis and Prabhakar (1983) by dispensing with the con-

tinuity assumption on the preference correspondences. Although the proof of our

equilibrium existence theorem in an abstract economy follows the approach of Yan-

nelis and Prabhakar (1983), we cannot rely on the continuous selections results, as it

was the case in their work (and even earlier in Gale and Mas-Colell (1975)). Indeed,
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the preference correspondence may not admit any the continuous selection in our

setting.3

Thirdly, we obtain the existence of Walrasian equilibria in an exchange econ-

omy where the preference correspondences could be discontinuous, non-transitive,

incomplete, interdependent and price-dependent. An additional point we would like

to emphasize is that contrary to the standard existence results in the literature, we

do not impose the assumption that the initial endowment is an interior point of the

consumption set.

Lastly, we extend the classical Gale-Debreu-Nikaido lemma (see Debreu (1956))

by allowing for discontinuous demand correspondences. Our extension generalizes

the Gale-Debreu-Nikaido lemma to infinite dimensional spaces, and also extends the

results of Aliprantis and Brown (1983) and Yannelis (1985). To show that our gen-

eralization is non-vacuous, an example on Walrasian equilibrium with discontinuous

preferences is provided, which cannot be covered by any existence result in the litera-

ture. However, our version of the Gale-Debreu-Nikaido lemma can be applied to this

example.

This chapter is based on He and Yannelis (2014, 2015a), and proceeds as

follows. Section 1.2 collects some basic notations and definitions, and discusses the

preservation and the failure of the continuous inclusion property under some usual

operations. Section 1.3 proves a fixed-point theorem and a generalization of the

fixed-point theorem of Gale and Mas-Colell (1975), and obtains the existence of Nash

3Independently of our work, Reny (2015b) has also obtained related results.
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equilibrium in games with discontinuous preferences. Section 1.4 provides a proof of

the existence of equilibrium for an abstract economy, which extends the results of

Shafer and Sonnenschein (1975) and Yannelis and Prabhakar (1983). The existence

of Walrasian equilibrium with finite and infinite dimensional commodity spaces is

proved and discussed in Sections 1.5. Section 1.6 presents a generalization of the

Gale-Debreu-Nikaido lemma to the setting with discontinuous preferences in infinite

dimensional spaces.

1.2 Basics

1.2.1 Definitions

Let X and Y be linear topological spaces, and ψ a correspondence from X to

Y . Then ψ is said to be lower hemicontinuous if the lower inverse ψl(V ) = {x ∈

X : ψ(x)∩V 6= ∅} is open in X for every open subset V of Y , upper hemicontinuous

if the upper inverse ψu(V ) = {x ∈ X : ψ(x) ⊆ V } is open in X for every open subset

V of Y , and upper demicontinuous if the upper inverse of every open half space

in Y is open in X. In addition, if the set

G = {(x, y) ∈ X × Y : y ∈ ψ(x)}

is open (resp. closed) in X × Y , then we say that ψ has an open (resp. closed)

graph. If ψl(y) is open for each y ∈ Y , then ψ is said to have open lower sections.

At some x ∈ X, if there exists an open set Ox such that x ∈ Ox and ∩x′∈Oxψ(x′) 6= ∅,

then we say ψ has the local intersection property. Furthermore, ψ is said to have the

local intersection property if this property holds for every x ∈ X. Given a linear
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topological space X, its dual is the space X∗ of all continuous linear functionals on

X.

Clearly, every nonempty correspondence with open lower sections has the local

intersection property. Yannelis and Prabhakar (1983) proved a continuous selection

theorem and several fixed-point theorems by assuming that ψ has open lower sections.

Based on the local intersection property, Wu and Shen (1996) generalized the results

of Yannelis and Prabhakar (1983).4 Recently, Scalzo (2015a) proposed the “local con-

tinuous selection property”, and proved that this condition is necessary and sufficient

for the existence of continuous selections.

We now introduce the “continuous inclusion property”.

Definition 1. A correspondence ψ from X to Y is said to have the continuous

inclusion property at x if there exists an open neighborhood Ox of x and a nonempty

correspondence Fx : Ox → 2Y such that Fx(z) ⊆ ψ(z) for any z ∈ Ox and coFx
5 has

a closed graph.6

The continuous inclusion property is motivated by the majorization idea in

general equilibrium (see the KF-majorization in Borglin and Keiding (1976), and L-

majorization in Yannelis and Prabhakar (1983)), and also the “multiply security”

4Mappings with the local intersection property have found applications in mathematical
economics and game theory, see Wu and Shen (1996) and Prokopovych (2011) among others.

5For a correspondence F , coF denotes the convex hull of F .

6If the sub-correspondence Fx has a closed graph and X is finite dimensional, then coFx
still has a closed graph since the convex hull of a closed set is closed in finite dimensional
spaces. However, this may not be true if one works with infinite dimensional spaces. One
can easily see that assuming the sub-correspondence Fx is convex valued and has a closed
graph would suffice for our aim.
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condition of McLennan, Monteiro and Tourky (2011), the “continuous security” con-

dition of Barelli and Meneghel (2013), and the “correspondence security” condition

of Reny (2015a) in the context of discontinuous games.

Remark 1. If the correspondence ψ from X to Y has the local intersection property

at x, then Fx can be chosen as a constant correspondence which only contains a singe

point of ∩x′∈Oxψ(x′), and hence ψ also has the continuous inclusion property at x. As

a result, any nonempty correspondence with open lower sections has the continuous

inclusion property. Furthermore, any upper hemicontinuous, convex and compact

valued correspondence satisfies the continuous inclusion property.

1.2.2 Operations on Correspondences

In this subsection, we consider the preservation and the failure of the con-

tinuous inclusion property under some usual operations, including union, inclusion,

addition and product.

Let X, Y , Z, {Xj}j∈J and {Yj}j∈J be linear topological spaces, where J is an

index set. Given a family of correspondences {ψj}j∈J from X to Y , we define the

union and intersection of this family pointwise. That is, ∪j∈Jψj maps x to ∪j∈Jψj(x),

and ∩j∈Jψj maps x to ∩j∈Jψj(x).

Let ψ1 and ψ2 be two correspondences from X to Y , and α and β be two

nonzero numbers. The linear combination αψ1 + βψ2 of ψ1 and ψ2 is defined as

(αψ1 + βψ2)(x) = {αy1 + βy2 : y1 ∈ ψ1(x), y2 ∈ ψ2(x)}.

The product of a family of correspondences {ψj : Xj → 2Yj}j∈J is the correspondence
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∏
j∈J ψj from

∏
j∈J Xj to

∏
j∈J Yj, defined naturally by (

∏
j∈J ψj)(x) =

∏
j∈J ψj(xj)

for each x = {xj}j∈J .

In the next proposition, we consider the preservation and the failure of the

continuous inclusion property under some regularity conditions.

Proposition 1. 1. Let ψ1 : X → 2Y be a correspondence having the continuous in-

clusion property, and {φj : X → 2Y }j∈J be a family of arbitrary correspondences.

Then their union (∪j∈Jφj) ∪ ψ1 also has the continuous inclusion property.

2. Let ψ1 : [0, 1] → 2[0,1] and ψ2 : [0, 1] → 2[0,1] be two correspondences both having

the continuous inclusion property, their intersection may not have the continu-

ous inclusion property.

3. If Y is a compact Hausdorff space, and ψ, φ : X → 2Y are convex valued corre-

spondences with the continuous inclusion property, then αψ + βφ has the con-

tinuous inclusion property for any nonzero α and β.

4. Let {ψi : Xi → 2Yi}1≤i≤n be a finite family of correspondences having the contin-

uous inclusion property. Then their product
∏

1≤i≤n ψi also has the continuous

inclusion property.

Proof. (1) Fix x ∈ X. Since ψ1 has the continuous inclusion property, there exists

an open neighborhood Ox of x and a nonempty correspondence Fx : Ox → 2Y such

that Fx(x
′) ⊆ ψ1(x′) for any x′ ∈ Ox and coFx has a closed graph. Since ψ1 is a

sub-correspondence of (∪j∈Jφj) ∪ ψ1, the rest is clear.
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(2) Let ψ1 : [0, 1]→ 2[0,1] and ψ2 : [0, 1]→ 2[0,1] be defined as follows:

ψ1(x) =


{x, 0}, 0 ≤ x ≤ 1

2
,

{x, 1}, 1
2
< x ≤ 1;

ψ2(x) =


{1− x, 0}, 0 ≤ x ≤ 1

2
;

{1− x, 1}, 1
2
< x ≤ 1.

It is obvious that ψ1 and ψ2 satisfy the continuous inclusion property since both of

them have continuous selections. However, their intersection is

ψ1 ∩ ψ2(x) =



{0}, 0 ≤ x < 1
2
;

{0, 1
2
}, x = 1

2
;

{1}, 1
2
< x ≤ 1.

It is clear that the correspondence ψ1 ∩ ψ2 does not satisfy the continuous inclusion

property at the point 1
2
.

(3) Fix x ∈ X. Since ψ and φ are convex valued and have the continuous

inclusion property at x, there exist open neighborhoods O1
x and O2

x of x, and nonempty

convex valued correspondences F 1
x : O1

x → 2Y and F 2
x : O2

x → 2Y such that F 1
x (x′) ⊆

ψ(x′) for any x′ ∈ O1
x and F 2

x (x′) ⊆ φ(x′) for any x′ ∈ O2
x, and both F 1

x and F 2
x

have closed graphs. Let Ox = O1
x ∩ O2

x and Gx = αF 1
x + βF 2

x . Then Ox is an open

neighborhood of x, Gx is convex valued, and Gx(x
′) ⊆ (αψ+βφ)(x′) for any x′ ∈ Ox.

Since Y is a compact Hausdorff space and F 1
x (resp. F 2

x ) has a closed graph, F 1
x

(resp. F 2
x ) is upper hemicontinuous and compact valued. As a result, Gx is upper

hemicontinuous and compact valued, and hence has a closed graph. This proves our

claim.

(4) This property is obvious.
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1.3 Some Fixed-Point Theorems

1.3.1 A Fixed-Point Theorem

Below, we prove a fixed-point theorem based on the continuous inclusion prop-

erty. This theorem replaces the upper hemicontinuity condition on the fixed point

theorems of Fan (1952) and Glicksberg (1952) by the continuous inclusion property.

Since an upper hemicontinuous, convex and compact valued correspondence has the

continuous inclusion property, our fixed point theorem improves the fixed point the-

orems of Fan (1952) and Glicksberg (1952).

Theorem 1. Let X be a nonempty, compact, convex subset of a Hausdorff locally

convex linear topological space Y , and ψ : X → 2X be a correspondence which is

nonempty and convex valued, and has the continuous inclusion property. Then there

exists a point x∗ ∈ X such that x∗ ∈ ψ(x∗).

Proof. Since ψ has the continuous inclusion property, for each x ∈ X, there exists

an open neighborhood Ox and a nonempty correspondence Fx : Ox → 2X such that

Fx(z) ⊆ ψ(z) for any z ∈ Ox and coFx has a closed graph.

The collection C = {Ox : x ∈ X} is an open cover of X. Since X is compact,

there is a finite set {x1, . . . , xn} such that X ⊆ ∪1≤i≤nOxi . Let {Exi}1≤i≤n be a closed

refinement; that is, Exi ⊆ Oxi , Exi is closed and X = ∪1≤i≤nExi (see Michael (1953,

Lemma 1)).

For each x ∈ X, let I(x) = {1 ≤ i ≤ n : x ∈ Exi}, and F (x) = co
(
∪i∈I(x)coFxi(x)

)
.

Then it is obvious that F is nonempty and convex valued. Moreover, F is also com-

pact valued; see Hildenbrand (1974, p.37). For each x and i ∈ I(x), Fxi(x) ⊆ ψ(x).
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Since ψ is convex valued, coFxi(x) ⊆ ψ(x), which implies that ∪i∈I(x)coFxi(x) ⊆ ψ(x).

Again by the convexity of ψ(x), we have F (x) = co
(
∪i∈I(x)coFxi(x)

)
⊆ ψ(x).

Since coFxi has a closed graph in Exi and X is a compact Hausdorff space,

it is upper hemicontinuous in Exi . We can slightly abuse the notation by assuming

that coFxi is empty when xi /∈ Exi . As Exi is a closed set, the correspondence

coFxi is upper hemicontinuous on the whole space. For each x, I(x) is finite, which

implies that ∪i∈I(x)coFxi(x) is the union of a finite family of upper hemicontinuous

correspondences, and hence is upper hemicontinuous (see Hildenbrand (1974, p.22)).

Since F (x) is the convex hull of ∪i∈I(x)coFxi(x) and it is compact valued, it is also

upper hemicontinuous (see Proposition 6 in Hildenbrand (1974, p.26)). By Fan-

Glicksberg’s fixed-point theorem (see Fan (1952) and Glicksberg (1952)), there is a

point x∗ ∈ X such that x∗ ∈ F (x∗) ⊆ ψ(x∗).

Remark 2. Browder (1968, Theorem 1) and Yannelis and Prabhakar (1983, Theo-

rem 3.3) proved a fixed point theorem by assuming that Y a Hausdorff linear topolog-

ical space (not necessarily locally convex) and the correspondence ψ has open lower

sections. In Wu and Shen (1996, Theorem 2), Y is required to be locally convex and

ψ has the local intersection property. Since the local intersection property implies the

continuous inclusion property, our result covers the theorem of Wu and Shen (1996)

as a corollary.
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1.3.2 A Generalization of the Gale and Mas-Colell’s Fixed-Point Theorem

Below, we will generalize the fixed-point theorem of Gale and Mas-Colell (1975)

based on our continuous inclusion property.

Theorem 2. Let I be a countable set and for each i ∈ I, Xi be a nonempty, compact,

convex and metrizable subset of a Hausdorff locally convex linear topological space, and

X =
∏

i∈I Xi. For each i ∈ I, let ψi : X → 2Xi be a convex valued correspondence,

and I(x) = {i ∈ I : ψi(x) 6= ∅, xi /∈ ψi(x)}. Suppose that for every x ∈ X with

I(x) 6= ∅, there is some i ∈ I(x) such that ψi has the continuous inclusion property

at x. Then there exists a point x∗ ∈ X such that for each i, either x∗i ∈ ψi(x
∗) or

ψi(x
∗) = ∅.

We first present two preparatory lemmas.

Lemma 1. Suppose that the conditions in Theorem 2 hold. For each i, let

Ui = {x ∈ X : ψi has the continuous inclusion property at x}.

If Ui = ∅ for all i, then the result of Theorem 2 is true.

Proof. Since Ui = ∅ for each i, I(x) = ∅ for all x by the conditions in Theorem 2,

which implies that for each i, either xi ∈ ψi(x) or ψi(x) = ∅.

Lemma 2. Under conditions of Theorem 2, for each i such that Ui 6= ∅, there ex-

ists a nonempty, convex and compact valued, upper hemicontinuous correspondence

φi : Ui → 2Xi such that φi(x) ⊆ ψi(x) for each x ∈ Ui.
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Proof. Suppose that Ui 6= ∅. Since ψi has the continuous inclusion property at each

x ∈ Ui, there exists an open subset Oi
x ⊆ X such that x ∈ Oi

x and a correspondence

F i
x : Oi

x → 2Xi with nonempty values such that F i
x(z) ⊆ ψi(z) for any z ∈ Oi

x and

coF i
x is closed. Then Oi

x ⊆ Ui, which implies that Ui is open. Since X is metrizable,

Ui is paracompact (see for example, Michael (1956, p. 831)). Moreover, the collection

Ci = {Oi
x : x ∈ X} is an open cover of Ui. There is a closed locally finite refinement

Fi = {Ei
k : k ∈ K}, where K is an index set and Ei

k is a closed set in X (see Michael

(1953, Lemma 1)).

For each k ∈ K, choose xk ∈ X such that Ei
k ⊆ Oi

xk
. For each x ∈ Ui,

let Ii(x) = {k ∈ K : x ∈ Ei
k}. Then Ii(x) is finite for each x ∈ Ui. Let φi(x) =

co
(
∪k∈Ii(x)coF i

xk
(x)
)

for x ∈ Ui. For each x and k ∈ Ii(x), F i
xk

(x) ⊆ ψi(x). Thus,

coF i
xk

(x) ⊆ ψi(x), which implies that ∪k∈Ii(x)coF i
xk

(x) ⊆ ψi(x). As a result, we have

φi(x) = co
(
∪k∈Ii(x)coF i

xk
(x)
)
⊆ ψi(x).

Since coF i
xk

has a closed graph in Ei
k and Xi is a compact Hausdorff space,

coF i
xk

is compact valued and upper hemicontinuous. For each x, Ii(x) is finite, which

implies that ∪k∈Ii(x)coF i
xk

(x) is the union of values for a finite family of compact

valued and upper hemicontinuous correspondences, and hence is also compact valued

and upper hemicontinuous at the point x. Since each coF i
xk

(x) is convex and compact,

and φi(x) is the convex hull of the finite union ∪k∈Ii(x)coF i
xk

(x), φi(x) is also compact,

which implies that φi(x) is upper hemicontinuous at the point x ∈ Ui. This completes

the proof.

Now we are ready to prove Theorem 2.
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Proof of Theorem 2. By Lemma 1, we only need to consider the case that there exists

some i such that Ui 6= ∅.

Define a correspondence

Hi(x) =


φi(x), x ∈ Ui;

Xi, otherwise.

Then it is obvious that Hi is nonempty, convex and compact valued. Since Ui is open

and φi is upper hemicontinuous by Lemma 2, Hi is upper hemicontinuous on the

whole space. Let H =
∏

i∈I Hi. Since H is nonempty, convex and compact valued,

and upper hemicontinuous, by the Fan-Glicksberg fixed point theorem (see Fan (1952)

and Glicksberg (1952)), there exists a point x∗ ∈ X such that x∗ ∈ H(x∗).

Let J = {i ∈ I : x∗i /∈ ψi(x∗)}. Then I(x∗) ⊆ J . If x∗ ∈ Uj for some j ∈ J ,

then x∗j ∈ φj(x∗) ⊆ ψj(x
∗), which is a contradiction. Thus, we have x∗ /∈ Uj for every

j ∈ J , which implies that I(x∗) = ∅. Therefore, for every j ∈ J , ψj(x
∗) = ∅. For

every i ∈ I \ J , x∗i ∈ ψi(x∗). The proof is complete.

Remark 3. In Gale and Mas-Colell (1975), Xi is finite dimensional and ψi is lower

hemicontinuous for each i. Then the continuous selection theorem of Michael (1956,

Theorem 3.1”’)) implies that ψi has a continuous selection φi on Ui, which can be

regarded as a continuous sub-correspondence of ψi. Thus, the continuous inclusion

property holds and the result follows.

In addition, our result implies that one can further weaken the lower hemicon-

tinuity condition of Gale and Mas-Colell (1975). Specifically, at each x ∈ Ui, suppose

that there exists an open neighborhood Oi
x of x and a nonempty convex valued, lower
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hemicontinuous correspondence F i
x : Oi

x → Xi with F i
x(z) ⊆ ψi(z) for z ∈ Oi

x. Then

the continuous inclusion property still holds. However, in this case Xi is still required

to be finite dimensional since the continuous selection theorem of Michael (1956) is

needed.

1.3.3 Existence of Maximal Elements

Suppose that X is a nonempty subset of a linear topological space. Let P (x) =

{y ∈ X : (y, x) ∈ P} for all x ∈ X, where P is some binary relation on X. Then P is

a preference correspondence induced by P on X. If P (x∗) = ∅ for some x∗ ∈ X, then

x∗ is said to be a maximal element in X.

Corollary 1. Let X be a compact, convex subset of a Hausdorff locally convex linear

topological space and P : X → 2X be a correspondence such that for all x ∈ X,

x /∈ coP (x). If P has the continuous inclusion property at each x ∈ X such that

P (x) 6= ∅, then there exists a point x∗ ∈ X such that P (x∗) = ∅.

Proof. By way of contradiction, suppose that P (x) 6= ∅ for all x ∈ X. Then the

correspondence ψ(x) = coP (x) is convex and nonempty valued. It is clear that ψ has

the continuous inclusion property. By Theorem 1, there exists a fixed point x∗ ∈ X

such that x∗ ∈ ψ(x∗) = coP (x∗), a contradiction.

Remark 4. Theorem 5.1 of Yannelis and Prabhakar (1983) proved the existence of

maximal element when X is a compact, convex subset of a Hausdorff linear topolog-

ical space and the correspondence P has open lower sections. This result generalizes

Lemma 4 of Fan (1962). In our Corollary 1, the condition on the correspondence is
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more general while X is required to be locally convex.

Below, we shall illustrate the usefulness of the above corollary.

Let 4 and X be two Hausdorff locally convex linear topological spaces, where

4 is the set of all price vectors and X is the set of goods. Let the correspondence

B : 4 → 2X denote the budget set which is assumed to be nonempty, convex and

compact valued. The preference correspondence is denoted by P : X → 2X and

satisfies the condition that x /∈ coP (x) for any x ∈ X. Let ψ(p, x) = B(p)∩P (x), and

define the demand correspondence D : 4→ 2X by D(p) = {x ∈ B(p) : ψ(p, x) = ∅}.

Corollary 2. If ψ(p, ·) has the continuous inclusion property for each p ∈ 4,7 then

the demand correspondence D is nonempty valued.

Proof. Fix p0 ∈ 4. Since x /∈ coP (x) for any x ∈ X, it follows that x /∈ coψ(p0, x)

for any x ∈ B(p0). Since ψ(p0, ·) : B(p0) → 2B(p0) has the continuous inclusion

property, B(p0) is nonempty, convex and compact, by Corollary 1, there exists a

point x0 ∈ B(p0) such that ψ(p0, x0) = ∅. That is, x0 ∈ D(p0), which implies that D

is nonempty valued.

The above corollary generalizes the corresponding theorem in Sonnenschein

(1971) by relaxing the continuity assumption.

7The continuity inclusion property captures the case that the preference could be discon-
tinuous. For example, people’s preference on food could dramatically change if the amount
goes to the zero: people will be sick or even die.
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1.3.4 Existence of Nash Equilibrium

Below, we obtain the existence of a Nash equilibrium in games with (possibly)

nontransitive, incomplete, discontinuous preferences as a direct corollary of Theo-

rem 2. Notice that the preference need not be representable by a utility function.

Let I be a set of countable players, and the game is Γ = {(Xi, Pi) : i ∈ I},

where Xi is the action space of player i, X =
∏

i∈I Xi, and the preference corre-

spondence of player i is Pi : X → 2Xi . If the preference Pi can be represented by a

utility function ui : X → R, then

Pi(x) = {yi ∈ Xi : ui(yi, x−i) > ui(x)}.

Corollary 3. Let Γ = {(Xi, Pi) : i ∈ I} be a game such that for each i ∈ I:

i Xi is a nonempty, compact, convex, metrizable subset of a Hausdorff locally convex

linear topological space;

ii Let I(x) = {i ∈ I : Pi(x) 6= ∅}. Suppose that for every x ∈ X with I(x) 6= ∅, there

exists an agent i ∈ I(x) such that Pi has the continuous inclusion property at x

and xi /∈ coPi(x).

Then Γ has a Nash equilibrium; that is, there exists some x∗ ∈ X such that for any

i ∈ I, Pi(x
∗) = ∅.

Proof. Denote ψi = coPi for each i ∈ I. Let I ′(x) = {i ∈ I : ψi(x) 6= ∅, xi /∈ ψi(x)}.

Then for every x ∈ X with I ′(x) 6= ∅, I(x) 6= ∅. By condition (ii), there exists an

agent i ∈ I ′(x) such that ψi has the continuous inclusion property at x.

By Theorem 2, there exists a point x∗ ∈ X such that for each i, either x∗i ∈
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ψi(x
∗) or ψi(x

∗) = ∅. Then I(x∗) = {i ∈ I : x∗i ∈ ψi(x
∗)}. If I(x∗) 6= ∅, then by

condition (ii), there is an agent i ∈ I(x∗) such that Pi has the continuous inclusion

property at x∗ and x∗i /∈ ψi(x
∗), which is a contradiction. As a result, I(x∗) = ∅.

That is, ψi(x
∗) = ∅ for each i ∈ I, which implies that x∗ is a Nash equilibrium in the

game Γ.

The following result is an immediate corollary of Corollary 3. The continuous

inclusion property is directly assumed for each player.

Corollary 4. Let Γ = {(Xi, Pi) : i ∈ I} be a game such that for each i ∈ I:

i Xi is a nonempty, compact, convex, metrizable subset of a Hausdorff locally convex

linear topological space;

ii Pi has the continuous inclusion property at each x ∈ X = ×i∈IXi with Pi(x) 6= ∅;

iii xi /∈ coPi(x) for all x ∈ X.

Then Γ has a Nash equilibrium; that is, ∃x∗ ∈ X such that for any i ∈ I, Pi(x
∗) = ∅.

Remark 5. Suppose that for each i ∈ I, the utility function ui satisfy the gener-

alized payoff security condition of Carmona (2011b), and define the value function

gi : X−i → R by gi(x−i) = supxi∈Xi
ui(xi, x−i). Fix ε > 0. For each i ∈ I, consider

the correspondence

M ε
i (x−i) = {xi ∈ Xi : ui(xi, x−i) > gi(x−i)− ε}.

Then it is easy to see that M ε
i has the continuous inclusion property. Following

the argument in Prokopovych (2011), one can impose standard conditions (e.g., qua-
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siconcavity and transfer reciprocal upper semicontinuity) to prove the existence of

approximate and exact Nash equilibrium.

Remark 6. Reny (1999) proved the existence of a pure strategy Nash equilibrium in

games with discontinuous payoffs based on some payoff security type condition. Our

corollaries 3 and 4 extend his results to non-ordered preferences, but do not imply his

and vice versa. However, to verify the conditions of theorems in the above paper, one

has to work with the non-equilibrium point, and check for all players at every point

in a neighborhood of this non-equilibrium point. To the contrary, we can check the

preference correspondence for each agent separately, as shown in Corollary 4.8

1.4 Equilibria in Abstract Economies

1.4.1 Results

In this section we prove the existence of equilibrium for an abstract economy

with an infinite number of commodities and a countable number of agents.

An abstract economy is a set of ordered triples Γ = {(Xi, Ai, Pi) : i ∈ I},

where

• I is a countable set of agents.

• Xi is a nonempty set of actions for agent i. Set X =
∏

i∈I Xi.

• Ai : X → 2Xi is the constraint correspondence of agent i.

• Pi : X → 2Xi is the preference correspondence of agent i.

An equilibrium of Γ is a point x∗ ∈ X such that for each i ∈ I:

8For further results, see Reny (2015a) and Carmona and Podczeck (2015).
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1. x∗i ∈ Ai(x∗), where Ai denotes the closure of Ai, and

2. Pi(x
∗) ∩ Ai(x∗) = ∅.

If Ai ≡ Xi for all i ∈ I, then the point x∗ is a Nash equilibrium.

For each i ∈ I, let ψi(x) = Ai(x) ∩ Pi(x) for all x ∈ X.

Theorem 3. Let Γ = {(Xi, Ai, Pi) : i ∈ I} be an abstract economy such that for each

i ∈ I:

i Xi is a nonempty, compact, convex, metrizable subset of a Hausdorff locally convex

linear topological space;

ii Ai is nonempty and convex valued;

iii the correspondence Ai is upper hemicontinuous;

iv ψi has the continuous inclusion property at each x ∈ X with ψi(x) 6= ∅;

v xi /∈ coψi(x) for all x ∈ X.

Then Γ has an equilibrium.

Proof. Fix i ∈ I. Let Ui = {x ∈ X : ψi(x) 6= ∅}.9 Since ψi has the continuous

inclusion property at each x ∈ Ui, there exist an open set Oi
x ⊆ X such that x ∈ Oi

x

and a correspondence F i
x : Oi

x → 2Xi with nonempty values such that F i
x(z) ⊆ ψi(z)

for any z ∈ Oi
x and coF i

x is closed. Then Oi
x ⊆ Ui, which implies that Ui is open.

Since X is metrizable, Ui is paracompact (see Michael (1956, p. 831)). Moreover, the

collection Ci = {Oi
x : x ∈ X} is an open cover of Ui. There is a closed locally finite

9If Ui = ∅ for all i, then the correspondence A =
∏
i∈I Ai is nonempty, convex valued

and upper hemicontinuous. As a result, there exists a fixed-point x∗ of A which is an
equilibrium.
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refinement Fi = {Ei
k : k ∈ K}, where K is an index set and Ei

k is a closed set in X

(see Michael (1953, Lemma 1)).

For each k ∈ K, choose xk ∈ X such that Ei
k ⊆ Oi

xk
. For each x ∈ Ui,

let Ii(x) = {k ∈ K : x ∈ Ei
k}. Then Ii(x) is finite for each x ∈ Ui. Let φi(x) =

co
(
∪k∈Ii(x)coF i

xk
(x)
)

for x ∈ Ui. For each x and k ∈ Ii(x), F i
xk

(x) ⊆ ψi(x). Thus,

coF i
xk

(x) ⊆ coψi(x), which implies that ∪k∈Ii(x)coF i
xk

(x) ⊆ coψi(x). As a result, we

have φi(x) = co
(
∪k∈Ii(x)coF i

xk
(x)
)
⊆ coψi(x).

Define the correspondence

Hi(x) =


φi(x) x ∈ Ui;

Ai(x) otherwise.

Then it is obvious that Hi is nonempty and convex valued. Moreover, Hi is also

compact valued (see Lemma 5.29 in Aliprantis and Border (2006)).

Since coF i
xk

has a closed graph in Ei
k and Ei

k is a compact Hausdorff space, it is

upper hemicontinuous. For each x, Ii(x) is finite, which implies that ∪k∈Ii(x)coF i
xk

(x)

is the union of values for a finite family of upper hemicontinuous correspondences,

and hence is upper hemicontinuous at the point x (see Aliprantis and Border (2006,

Theorem 17.27)). Then φi(x) is the convex hull of ∪k∈Ii(x)coF i
xk

(x) and it is compact

for all x ∈ Ui, hence it is upper hemicontinuous on Ui (see Aliprantis and Border

(2006, Theorem 17.35)). Note that Hi(x) is φi(x) when x ∈ Ui, and Ai(x) when

x /∈ Ui. Since Ui is open, analogous to the argument in Yannelis and Prabhakar (1983,

Theorem 6.1), Hi is upper hemicontinuous on the whole space. Let H =
∏

i∈I Hi.

Since H is nonempty, convex and closed valued, by the Fan-Glicksberg fixed point
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theorem, there exists a point x∗ ∈ X such that x∗ ∈ H(x∗).

Since φi(x) ⊆ Ai(x) for x ∈ Ui, Hi(x) ⊆ Ai(x) for any x, which implies that

x∗i ∈ Ai(x∗). Note that if x∗ ∈ Ui for some i ∈ I, then x∗i ∈ co
(
∪k∈Ii(x∗)coF i

xk
(x∗)

)
⊆

coψi(x
∗), a contradiction to assumption (v). Thus, we have x∗ /∈ Ui for all i ∈ I.

Therefore, ψi(x
∗) = ∅, which implies that Ai(x

∗) ∩ Pi(x∗) = ∅. That is, x∗ is an

equilibrium for Γ.

Below, we show that the theorem of Shafer and Sonnenschein (1975) and The-

orem 6.1 of Yannelis and Prabhakar (1983) on the existence of equilibrium in an

abstract economy can be obtained as corollaries. Note that in Shafer and Sonnen-

schein (1975) the correspondence Ai is compact valued for each i ∈ I, and therefore

there is no need to work with the closure of Ai. That is, an equilibrium x∗ should

satisfy x∗i ∈ Ai(x∗) and Pi(x
∗) ∩ Ai(x∗) = ∅. In Yannelis and Prabhakar (1983), the

equilibrium notion is the same as defined above.

Corollary 5. [Shafer and Sonnenschein (1975)]

Let Γ = {(Xi, Ai, Pi) : i ∈ I} be an abstract economy such that for each i ∈ I:

i Xi is a nonempty, compact, convex subset of Rl
+;

ii Ai is nonempty, convex and compact valued;

iii Ai is a continuous correspondence;

v Pi has an open graph;

vi xi /∈ coψi(x) for all x ∈ X.10

10Shafer and Sonnenschein (1975) assume that xi /∈ coPi(x) for all x ∈ X, but their
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Then Γ has an equilibrium x∗; that is, for any i ∈ I, x∗i ∈ Ai(x∗) and Pi(x
∗)∩Ai(x∗) =

∅.

Proof. For each i ∈ I, define a mapping Ui : Gr(Ai)→ R by Ui(y, xi) = dist((y, xi),GrC(Pi)),

where Gr(Ai) is the graph of Ai, GrC(Pi) denotes the complement of the graph of Pi

and dist(·, ·) denotes the usual distance on Rl
+. Since Pi has an open graph, Ui is con-

tinuous. Let mi(x) = maxz∈Ai(x) Ui(x, z) and φi(x) = {z ∈ Ai(x) : Ui(x, z) = mi(x)}

for each x ∈ X. Since Ai is continuous, by the Berge Maximum Theorem (see

Aliprantis and Border (2006, Theorem 17.31)), φi is nonempty, compact valued and

upper hemicontinuous. At any point x such that ψi(x) = Pi(x) ∩Ai(x) 6= ∅, we have

mi(x) > 0, and hence φi(x) ⊆ ψi(x). Thus, the continuous inclusion property holds

and by Theorem 3, there is an equilibrium.

Corollary 6. [Yannelis and Prabhakar (1983, Theorem 6.1)]

Let Γ = {(Xi, Ai, Pi) : i ∈ I} be an abstract economy such that for each i ∈ I:

i Xi is a nonempty, compact, convex, metrizable subset of a Hausdorff locally convex

linear topological space;

ii Ai is nonempty and convex valued;

iii the correspondence Ai is upper hemicontinuous;

iv Ai has open lower section;

v Pi has open lower section;

proof still holds under this more general condition. The same comment is also valid for
the existence theorem of Yannelis and Prabhakar (1983), see condition (vi) of Corollary 6
below.
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vi xi /∈ coψi(x) for all x ∈ X.

Then Γ has an equilibrium x∗; that is, for each i ∈ I, x∗i ∈ Ai(x
∗) and Pi(x

∗) ∩

Ai(x
∗) = ∅.

Proof. By Fact 6.1 in Yannelis and Prabhakar (1983), ψi has open lower sections. As

a result, ψi has the continuous inclusion property at each x ∈ X when ψi(x) 6= ∅.

Then the result follows from Theorem 3.

Remark 7. Note that our Theorem 3 also covers Theorem 10 of Wu and Shen (1996).

Wu and Shen (1996) did not impose the metrizability condition on Xi, but directly

assumed that Ui is paracompact. Our proof still holds under this condition.

Remark 8. In condition (iv) of Theorem 3, we assume that ψi has the continuous

inclusion property at each x ∈ X with ψi(x) 6= ∅. It is natural to ask whether we

can impose conditions on the correspondences Pi and Ai separately, and then verify

that their intersection ψi has the continuous inclusion property (for example, see

conditions (iv) and (v) in Yannelis and Prabhakar (1983, Theorem 6.1)). However,

a simple example can be constructed to show that a combination of the following two

conditions cannot guarantee our condition (iv):

1. Pi has the continuous inclusion property at x when Pi(x) 6= ∅;

2. Ai has an open graph.

Suppose that there is only one agent and X = [0, 1], A(x) = (0, 1] and

P (x) =


[0, 1], x = 1;

{0}, x ∈ [0, 1).
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Then it is obvious that P has the continuous inclusion property and A has an open

graph. However,

ψ(x) =


(0, 1], x = 1,

∅, x ∈ [0, 1);

does not have the continuous inclusion property.

1.4.2 Some Remarks

Subsequent to our results, Carmona and Podczeck (2015) dropped the metriz-

ability condition on Xi and generalized our conditions (4) and (5) as follows.

Let I(x) = {i ∈ I : ψi(x) 6= ∅}. For every x ∈ X such that I(x) 6= ∅ and

xi ∈ Ai(x) for all i ∈ I, there is an agent i ∈ I(x),

1. ψi has the continuous inclusion property at x;

2. xi /∈ coψi(x).

Notice that our proof above still goes through under this condition by slightly modi-

fying the definition of the set Ui as

{x ∈ X : ψi has the continuous inclusion property at x}.

The metrizability condition in our Theorem 3 is not needed. Following a similar

argument as in Borglin and Keiding (1976) and Toussaint (1984), we provide an

alternative proof for Theorem 3 in which the set of agents can be any arbitrary (finite

or infinite set) and Xi need not to be metrizable for each i.11

11It should be noted that using the existence of maximal element theorem for L-majorized
correspondences (see Yannelis and Prabhakar (1983)), it is known that the metrizability
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Alternative proof of Theorem 3. For each i ∈ I, define a correspondence Hi from X

to Xi as follows:

Hi(x) =


ψi(x), xi ∈ Ai(x);

Ai(x), xi /∈ Ai(x).

We will show that Hi has the continuous inclusion property at each x such that

Hi(x) 6= ∅.

1. If xi ∈ Ai(x), then ψi(x) = Hi(x) 6= ∅, which implies that there exists an open

neighborhood Ox of x and a nonempty correspondence Fx : Ox → 2Xi such that

Fx(z) ⊆ ψi(z) for any z ∈ Ox and coFx has a closed graph. For any z ∈ Ox,

Fx(z) ⊆ ψi(z) = Hi(z) if zi ∈ Ai(z), and Fx(z) ⊆ ψi(z) ⊆ Ai(z) = Hi(z) if

zi /∈ Ai(z).

2. Consider the case that xi /∈ Ai(x). Since the correspondence Ai is upper hemi-

continuous and closed valued, it has a closed graph. As a result, one can find

an open neighborhood Ox of x such that zi /∈ Ai(z) and hence Hi(z) = Ai(z)

for any z ∈ Ox. As Ai is upper hemicontinuous, closed and convex valued, Hi

has the continuous inclusion property.

Let I(x) = {i ∈ I : Hi(x) 6= ∅}. Define a correspondence H : X → 2X as

H(x) =


(
∏

i∈I(x)Hi(x))× (
∏

j∈I\I(x) Xj), I(x) 6= ∅;

∅, I(x) = ∅.

assumption is not needed. Indeed, the proof of Borglin and Keiding (1976) remains valid
if one replaces the KF-majorization by L-majorization. The existence of maximal element
theorem for correspondences having the continuous inclusion property can be used to show
that the metrizability in our Theorem 3 is not needed.
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It can be easily checked that H(x) has the continuous inclusion property at each x

such that H(x) 6= ∅.

In addition, one can easily show that x /∈ coH(x) for any x ∈ X. Indeed,

fix any x ∈ X. If I(x) = ∅, then H(x) = ∅, which implies that x /∈ coH(x). If

I(x) 6= ∅, then there exists an agent i such that Hi(x) 6= ∅. If xi ∈ Ai(x), then

xi /∈ coψ(x) = coHi(x). If xi /∈ Ai(x), then xi /∈ coHi(x) as Hi(x) = Ai(x) (since

Ai(x) is convex). Hence, x /∈ coH(x).

It is easy to see that there exists a point x∗ ∈ X such that H(x∗) = ∅, which

implies that I(x∗) = ∅. That is, for any i, Hi(x
∗) = ∅, which implies that x∗i ∈ Ai(x∗)

and ψi(x
∗) = Hi(x

∗) = ∅.

Remark 9. The previous proof adapted in Theorem 3 seems to be suitable to cover

the case where the set of agents is a measure space as in Yannelis (1987). It is not

clear whether the above proof can be easily extended to a measure space of agents.

1.5 Existence of Walrasian Equilibria

1.5.1 Existence of Free/Non-free Disposal Walrasian Equilibrium

An exchange economy E is a set of triples {(Xi, Pi, ei) : i ∈ I}, where

• I is a finite set of agents;

• Xi ⊆ Rl
+ is the consumption set of agent i, and X =

∏
i∈I Xi;

• Pi : X ×4 → 2Xi is the preference correspondence of agent i, where 4 is

the set of all possible prices;12

12We allow for very general preferences, which can be interdependent and price-dependent.
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• ei ∈ Xi is the initial endowment of agent i, where e =
∑

i∈I ei 6= 0.

Let 4 = {p ∈ Rl
+ :
∑l

k=1 pk = 1}. Given a price p ∈ 4, the budget set of

agent i is Bi(p) = {xi ∈ Xi : p · xi ≤ p · ei}. Let ψi(p, x) = Bi(p) ∩ Pi(x, p) for each

i ∈ I, x ∈ X and p ∈ 4. Then ψi(p, x) is the set of all allocations in the budget set

of agent i at price p that he prefers to x.

A free disposal Walrasian equilibrium for the exchange economy E is

(p∗, x∗) ∈ 4×X such that

1. for each i ∈ I, x∗i ∈ Bi(p
∗) and ψi(p

∗, x∗) = ∅;

2.
∑

i∈I x
∗
i ≤

∑
i∈I ei.

Theorem 4. Let E be an exchange economy satisfying the following assumptions: for

each i ∈ I,

1. Xi is a nonempty compact convex subset of Rl
+;13

2. ψi has the continuous inclusion property at each (p, x) ∈ 4×X with ψi(p, x) 6=

∅, and xi /∈ coψi(p, x).

Then E has a free disposal Walrasian equilibrium.

Proof. The proof follows the idea of Arrow and Debreu (1954), which introduces a

fictitious player; see also Shafer (1976).

For each i ∈ I, p ∈ 4 and x ∈ X, let Ai(p, x) = Bi(p). Define the correspon-

See McKenzie (1955) and Shafer and Sonnenschein (1975) for more discussions. For agent i,
yi ∈ Pi(x, p) means that yi is strictly preferred to xi provided that all other components are
unchanged at the price p ∈ 4.

13The commodity space Xi can be sufficiently large. For example, we can let Xi = {xi ∈
Rl+ : xi ≤ K ·

∑
i∈I ei}, where K is an arbitrarily large positive number.
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dences A0(p, x) = 4 and P0(p, x) = {q ∈ 4 : q·
(∑

i∈I(xi − ei)
)
> p·

(∑
i∈I(xi − ei)

)
}.

Let I0 = I ∪ {0}. Then for any i ∈ I0, Ai is nonempty, convex valued, and upper

hemicontinuous on 4×X.

Note that ψi(p, x) = Ai(p, x) ∩ Pi(p, x) has the continuous inclusion property

for each i ∈ I. Moreover, let ψ0(p, x) = A0(p, x)∩P0(p, x) = P0(p, x). Fix any (p, x) ∈

4 ×X such that ψ0(p, x) 6= ∅, pick q ∈ ψ0(p, x), then (q − p) ·
(∑

i∈I(xi − ei)
)
> 0.

Since the left side of the inequality is continuous, there is an open neighborhood O

of (p, x) such that for any (p′, x′) ∈ O, (q − p′) ·
(∑

i∈I(x
′
i − ei)

)
> 0, which implies

that the correspondence ψ0 has the continuous inclusion property. In addition, it is

obvious that ψ0 is convex valued and p /∈ ψ0(p, x) for any (p, x) ∈ 4×X.

Thus, we can view the exchange economy E as an abstract economy Γ =

{(Xi, Ai, Pi) : i ∈ I0} which satisfies all the conditions of Theorem 3. Therefore, there

exists a point (p∗, x∗) ∈ 4×X such that

1. x∗i ∈ Ai(p∗, x∗) = Bi(p
∗) and ψi(p

∗, x∗) = ∅ for each i ∈ I, and

2. P0(p∗, x∗) = ψ0(p∗, x∗) = ∅.

Let z =
∑

i∈I(x
∗
i−ei). Then (1) implies that p∗ ·z ≤ 0 and (2) implies that q ·z ≤ p∗ ·z

for any q ∈ 4, and hence q · z ≤ p∗ · z ≤ 0. Suppose that z /∈ Rl
−. Thus, there exists

some k ∈ {1, . . . , l} such that zk > 0. Let q′ = {qj}1≤j≤l such that qj = 0 for any

j 6= k and qk = 1. Then q′ ∈ 4 and q′ · z = zk > 0, a contradiction. Therefore,

z ∈ Rl
−, which implies that

∑
i∈I x

∗
i ≤

∑
i∈I ei.

Therefore, (p∗, x∗) is a free disposal Walrasian equilibrium.

Remark 10. We have imposed the compactness condition on the consumption set. It
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is not clear to us at this stage if this condition can be dispensed with. When agents’

preferences are continuous, one can work with a sequence of economies with compact

consumption sets, which are the truncations of the original consumption set. Then

the existence of Walrasian equilibrium allocations and prices can be proved in each

truncated economy. Since the set of feasible allocations and the price set are both

compact, there exists a convergent point. By virtue of the continuity of preferences,

one can show that this is indeed a Walrasian equilibrium of the original economy.

The convergence argument fails in our setting as we do not require the continuity

assumption on preferences. Consequently, relaxing the compactness assumption seems

to be an open problem.14

We must add that the compactness assumption is not unreasonable at all. The

world is finite, and the initial endowment for each good is also finite. Thus, by assum-

ing that for each good, ‖xi‖ ≤ K ·
∑

i∈I ‖ei‖, where K is a sufficiently large number

and I is the set of all agents in the world, no real restriction on the attainability of

the consumption of each good is imposed.

Note that in Theorem 4 we allowed for free disposal. Below we prove the

existence of a non-free disposal Walrasian equilibrium following the proof of Shafer

(1976).

Hereafter we allow for negative prices: 4′ = {p ∈ Rl : ‖p‖ =
∑l

k=1 |pk| ≤ 1}

14One could allow Xi = Rl by assuming that if xi ∈ Xi and x′i ∈ Pi(x), then also
(1 − λ)xi + λx′i ∈ Pi(x) for all 0 < λ < 1. With this assumption one needs to consider
only one truncation of the consumption sets (any truncation which contains the feasible
consumption points as interior points).
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is the set of all possible prices. Let Bi(p) = {xi ∈ Xi : p · xi ≤ p · ei + 1 − ‖p‖} and

ψi(p, x) = Pi(x, p)∩Bi(p) for each i ∈ I, x ∈ X and p ∈ 4′. Let K = {x :
∑

i∈I xi =∑
i∈I ei}, and pri : X → Xi be the projection mapping for each i ∈ I.

A (non-free disposal) Walrasian equilibrium for the exchange economy

E is (p∗, x∗) ∈ 4′ ×X such that

1. ‖p∗‖ = 1;

2. for each i ∈ I, x∗i ∈ Bi(p
∗) and ψi(p

∗, x∗) = ∅;

3.
∑

i∈I x
∗
i =

∑
i∈I ei.

If p∗ is a Walrasian equilibrium price, then ‖p∗‖ = 1 and Bi(p
∗) = {xi ∈ Xi : p

∗ · xi ≤

p∗ · ei}, which is the standard budget set of agent i.

Theorem 5. Let E be an exchange economy satisfying the following assumptions: for

each i ∈ I,

1. Xi is a nonempty compact convex subset of Rl
+;

2. ψi has the continuous inclusion property at each (p, x) ∈ 4′×X with ψi(p, x) 6=

∅, and xi /∈ coψi(p, x).

3. for each xi ∈ pri(K) and p ∈ 4′, xi ∈ bdPi(x, p), where bd denotes boundary.

Then E has a Walrasian equilibrium.

Proof. Repeating the arguments in the first two paragraphs of the proof of Theorem 4,

one could show that there exists a point (p∗, x∗) ∈ 4′ ×X such that

1. x∗i ∈ Ai(p∗, x∗) = Bi(p
∗) for each i ∈ I, which implies that p∗ · x∗i ≤ p∗ · ei + 1−

‖p∗‖;
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2. ψi(p
∗, x∗) = ∅ for each i ∈ I;

3. P0(p∗, x∗) = ψ0(p∗, x∗) = ∅.

Let z =
∑

i∈I(x
∗
i − ei). We must show that z = 0. Suppose that z 6= 0. From (3), it

follows that q ·z ≤ p∗ ·z for any q ∈ 4′. Let q = z
‖z‖ . Then q ∈ 4′ and p∗ ·z ≥ q ·z > 0.

Let q∗ = p∗

‖p∗‖ . Since p∗

‖p∗‖ · z ≥ p∗ · z ≥ q∗ · z, it follows that ‖p∗‖ = 1. As a result,

p∗ ·x∗i ≤ p∗ ·ei (since x∗i ∈ Ai(p∗, x∗)), which implies that p∗ ·z = p∗ ·
∑

i∈I(x
∗
i −ei) ≤ 0,

a contradiction. Thus, z = 0; that is,
∑

i∈I x
∗
i =

∑
i∈I ei, x

∗ ∈ K.

Note that x∗i ∈ pri(K) implies that x∗i ∈ bdPi(x
∗, p∗). Since x∗i ∈ Bi(p

∗) and

x∗i /∈ coψi(p
∗, x∗), x∗i /∈ Pi(x∗, p∗). If there exists some i such that p∗ ·x∗i < p∗ · ei+ 1−

‖p∗‖, then due to assumption (3), x∗i ∈ bdPi(x
∗, p∗) implies that one can find a point

yi ∈ Pi(x∗, p∗) such that x∗i and yi are sufficiently close, and p∗ · yi < p∗ · ei + 1−‖p∗‖.

Thus, yi ∈ ψi(p∗, x∗), which contradicts (2). Therefore, p∗ · x∗i = p∗ · ei + 1− ‖p∗‖ for

each i ∈ I, and summing up over all i yields ‖p∗‖ = 1.

Therefore, (p∗, x∗) is a Walrasian equilibrium.

Remark 11. Shafer (1976) proved the existence of non-free disposal Walrasian equi-

librium based on the equilibrium existence result of Shafer and Sonnenschein (1975)

(see Corollary 5 above). Thus, the main theorem of Shafer (1976) follows from our

Corollary 5 and Theorem 5.

Below, we provide an alternative proof of the theorem of Shafer (1976) without

invoking the norm of the price ‖p‖ into the budget set. It requires the nonsatiation

condition for one agent only. Furthermore, the proof below remains unchanged if

the consumption set is a nonempty, norm compact and convex subset of a Hausdorff
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locally convex topological vector space. This is not the case in Shafer (1976)’s proof,

since the norm of prices is part of the budget set. Recall that the price space 4′ is

weak∗ compact by Alaoglu’s theorem, and 4′ may not be metrizable unless the space

of allocations is separable.

Theorem 6. Let E be an exchange economy satisfying the following assumptions:

1. for each i ∈ I, let Xi be a nonempty compact convex set of Rl
+;

2. for each i ∈ I, ψi has the continuous inclusion property at each (p, x) ∈ 4′×X

with ψi(p, x) 6= ∅, and for any xi ∈ Xi, xi /∈ coψi(p, x);

3. for any p ∈ 4′ and x in the set of feasible allocations

A = {x ∈ X :
n∑
i=1

xi =
n∑
i=1

ei},

there exists an agent i ∈ I such that Pi(x, p) 6= ∅.

Then E has a Walrasian equilibrium (p∗, x∗); that is,

1. p∗ 6= 0;

2. for each i ∈ I, x∗i ∈ Bi(p
∗) and ψi(p

∗, x∗) = ∅;

3.
∑

i∈I x
∗
i =

∑
i∈I ei.

Most of the proof proceeds as in Theorem 4. We repeat the argument here for

the sake of completeness.

Proof. For each i ∈ I, p ∈ 4′ and x ∈ X, let Ai(p, x) = Bi(p). Denote X0 = 4′, and

define the correspondencesA0(p, x) ≡ 4′ and P0(p, x) = {q ∈ 4′ : q
(∑

i∈I(xi − ei)
)
>
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p
(∑

i∈I(xi − ei)
)
}.15 Let I0 = I ∪ {0}. Let ψ0(p, x) = A0(p, x) ∩ P0(p, x) = P0(p, x).

As shown in the proof of Theorem 4, for each i ∈ I0, the correspondence ψi is convex

valued, (p, x) /∈ ψi(p, x) for any (p, x) ∈ 4′ × X, and has the continuous inclusion

property.

We have constructed an abstract economy Γ = {(Xi, Pi, Ai) : i ∈ {0} ∪ I}. By

Theorem 3, there exists a point (p∗, x∗) ∈ 4′ ×X such that

1. x∗i ∈ Ai(p∗, x∗) = Bi(p
∗) and ψi(p

∗, x∗) = ∅ for each i ∈ I;

2. P0(p∗, x∗) = ψ0(p∗, x∗) = ∅.

Let z =
∑

i∈I(x
∗
i − ei). Then (1) implies that p∗(z) ≤ 0, and (2) implies that

q(z) ≤ p∗(z) for any q ∈ 4′, and hence q(z) ≤ p∗(z) ≤ 0. As a result, z = 0;16 that

is, x∗ ∈ A. To complete the proof we must show that p∗ 6= 0. Suppose otherwise;

that is, p∗ = 0. Then Bi(p
∗) = Xi and ψi(p

∗, x∗) = Pi(x
∗, p∗) = ∅ for each i ∈ I, a

contradiction to condition (3). Therefore, (p∗, x∗) is a Walrasian equilibrium.

Remark 12. In Theorems 4, 5 and 6, the condition that ψi has the continuous

inclusion property at each (p, x) ∈ 4 ×X with ψi(p, x) 6= ∅, and xi /∈ coψi(p, x) for

each i can be weakened following the argument in Subsection 1.4.2. In particular, one

can let I(x) = {i ∈ I : ψi(p, x) 6= ∅} and assume that for every x ∈ X such that

I(x) 6= ∅ and xi ∈ Ai(p, x) for all i ∈ I, there is an agent i ∈ I(x),

1. ψi has the continuous inclusion property at (p, x);

15The function q(x) is viewed as the inner product q · x when q is a price vector and x is
an allocation.

16If z 6= 0, then there exists a point q ∈ 4′ such that q(z) < 0, which implies that
−q(z) > 0. However, −q ∈ 4′, a contradiction.
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2. xi /∈ coψi(p, x).

In other words, the continuous inclusion property is not required for all agents, but

only for some agents. The proofs of Theorems 4, 5 and 6 can still go through under this

new condition.17 For pedagogical reasons, we work with condition (2) in Theorem 4.

1.5.2 Further Remarks

Remark 13. Theorem 6 can be extended to a more general setting with an infinite

dimensional commodity space. In particular, the commodity space can be any normed

linear space whose positive cone may not have an interior point, and the set of prices

is a subset of its dual space. If the consumption sets are nonempty, norm compact and

convex, and the price space is weak∗ compact, then the proof of Theorem 6 remains

unchanged.

Remark 14. To prove the existence of a Walrasian equilibrium in economies with infi-

nite dimensional commodity spaces, Mas-Colell (1986) proposed the “uniform proper-

ness” condition when the preferences are transitive, complete and convex. Yannelis

and Zame (1986) and Podczeck and Yannelis (2008) proved the existence result with

non-ordered preferences using the “extreme desirability” condition. All the above re-

sults impose on the commodity space a lattice structure. Our Theorem 6 does not

require the extreme desirability or uniform properness condition, and no ordering or

lattice structure is needed on the commodity space. It should be noticed that the proof

of our Theorem 6 requires that the evaluation map (p, xi)→ p(xi) from 4′×Xi to R

17Such a remark has been also made by Carmona and Podczeck (2015).
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is continuous for 4′ with the weak∗ topology, while this joint continuity property of

the evaluation map is not required in the papers above.

Mas-Colell (1986) provided an example of a single agent economy in which

the preference is reflexive, transitive, complete, continuous, convex and monotone,

but there is no quasi-equilibrium.18 We show that his example does not satisfies our

condition (2) of Theorem 6 when the commodity space is compact.

In the example of Mas-Colell (1986), the commodity space is the space of signed

bounded countably additive measures L = ca(K) with the bounded variation norm

‖ · ‖BV , where K = Z+ ∪ {∞} is the compactification of the positive integers. Let

xi = x({i}) for x ∈ L and i ∈ K. For every i ∈ K, define a function ui : [0,∞) →

[0,∞) by

ui(t) =


2it t ≤ 1

22i
;

1
2i
− 1

22i
+ t t > 1

22i
.

The preference relation P is given by U(x) =
∑i=∞

i=1 ui(xi), which is concave, strictly

monotone and weak∗ continuous.

Suppose that X = {x ∈ L+ : ‖x‖BV ≤ M} for some sufficiently large positive

integer M . Fix the initial endowment e = (0,M, 0, . . . , 0) ∈ X and the price p0 = 0.

Then ψ(p0, e) = B(p0) ∩ P (e) 6= ∅, as y = (M, 0, . . . , 0) ∈ ψ(p0, e). For each i ∈ K,

let wi({j}) = 1 if j = i and 0 otherwise. Fix a linear functional p ∈ L′ such that

p(w2) = 0 and p(wi) > 0 for i 6= 2. Set pn = p
n

. Then B(pn) = {0,m, 0, . . . , 0}, where

18The pair (p∗, x∗) is called a free (non-free) disposal quasi equilibrium if: (1) for each
i ∈ I, x∗i ∈ Bi(p∗); (2) xi ∈ Pi(x∗, p∗) implies that p∗ · xi ≥ p∗ · ei; (3)

∑
i∈I x

∗
i ≤

∑
i∈I ei

(
∑

i∈I x
∗
i =

∑
i∈I ei).
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0 ≤ m ≤ M . However, for any z ∈ B(pn), z /∈ P (e). Consequently, ψ(pn, e) = ∅.

This implies that the correspondence ψ does not have the continuous inclusion property

when the commodity space is compact, as pn → 0 when n → ∞. Therefore, the

example of Mas-Colell (1986) violates condition (2) of our Theorem 6.

Remark 15. If we interpret the infinite dimensional commodity space as goods over

an infinite time horizon, the weak, Mackey and weak∗ topologies on preferences imply

that agents are impatient, because those topologies are generated by finitely many

continuous linear functionals and they impose a form of “myopia” (that is, tails do

not matter, see for example Bewley (1972) and Araujo, Novinski and Páscoa (2011)

among others). As our theorems drop the continuity assumption, it will be interesting

to see if one can prove the existence theorem with patient agents relying on such

discontinuous preferences.

Remark 16. Contrary to the standard existence results of Walrasian equilibrium, in

the above theorems we do not impose the assumptions that the initial endowment is an

interior point of the consumption set, or the preference has an open graph/open lower

sections. Below we give an example in which the preferences are discontinuous, and

a Walrasian equilibrium exists. Notice that none of the classical existence theorems

cover the example below.

Example 1. Consider the following 2-agent 2-good economy:

1. The set of available allocations for both agents is X1 = X2 = [0, 1]× [0, 1].
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2. Agent 1’s preference correspondence depends on x1 = (x1
1, x

2
1) and x2 = (x1

2, x
2
2):

P1(x1, x2) =

{(y1
1, y

2
1) ∈ X1 : y1

1 ·y2
1 > x1

1 ·x2
1}\{(y1

1, y
2
1) ∈ X1 : y1

1−x1
1 = y2

1−x2
1, y

1
1 <

3

2
x1

1}.19

The preference of agent 2 is defined similarly.

3. The initial endowments are given by e1 = (1
3
, 2

3
) and e2 = (2

3
, 1

3
).

Note that Pi does not have open lower sections for any i = 1, 2. For example,

P l
i (

1

2
,
1

2
) =

{(y1
i , y

2
i ) ∈ [0, 1]× [0, 1] : y1

i · y2
i <

1

4
, y1
i 6= y2

i } ∪ {(z, z) : 0 ≤ z ≤ 1

3
}

which is neither open nor closed. As a result, Pi does not have an open graph.

We show that the conditions of Theorem 4 hold. Pick any point (p, x) ∈ 4×X

such that ψi(p, x) 6= ∅, then there exists a point yi ∈ ψi(p, x) = Bi(p) ∩ Pi(x). Since

yi ∈ Pi(x), it follows that y1
i · y2

i > x1
i · x2

i . Thus, one can pick a point zi = (z1
i , z

2
i )

such that zji < yji for j = 1, 2 and zi is an interior point of Pi(x).20 Consequently,

there exists an open neighborhood Oi of xi such that (z1
i , z

2
i ) ∈ P (x′i, x−i) for any

x′i ∈ Oi and x−i ∈ X−i. Furthermore, due to the fact that zji < yji for j = 1, 2,

we have 0 < p · zi < p · yi ≤ p · ei, which implies that there exists a neighborhood

19Given an allocation x = (x1, x2) = ((x1
1, x

2
1), (x1

2, x
2
2)) in the edgeworth box, the set

of allocations which is preferred to x for agent 1 is the set of all points above the curve
y1

1 · y2
1 = x1

1 · x2
1 such that the segment {(y1

1, y
2
1) : y1

1 − x1
1 = y2

1 − x2
1, x

1
1 ≤ y1

1 < 3
2x

1
1} is

removed.

20For example, one can choose the point zi = (y1
i − ε, y2

i − 2ε), where ε is a positive
number. It is easy to see that if ε is sufficiently small, then zi is an interior point of Pi(x).
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Op of p, zi ∈ Bi(p
′) for any p′ ∈ Op. Define the correspondence F(p,x) as follows:

F(p,x)(p
′, x′) ≡ {zi} for any (p′, x′) ∈ Op × (Oi ×X−i).

Then we have:

1. Op × (Oi ×X−i) is an open neighborhood of (p, x);

2. F(p,x)(p
′, x′) ≡ {zi} ⊆ ψi(p

′, x′) for any (p′, x′) ∈ Op × (Oi ×X−i);

3. F(p,x) is a single-valued constant correspondence, and hence is closed.

Therefore, ψ has the continuous inclusion property at (p, x). In addition, it is easy to

see that xi /∈ coψi(p, x). By Theorem 4 above, there exists a Walrasian equilibrium.

Indeed, it can be easily checked that (p∗, x∗) is a unique Walrasian equilibrium, where

p∗ = (p∗1, p
∗
2) = (1

2
, 1

2
), and x∗1 = x∗2 = (1

2
, 1

2
). Notice that even if the endowment is on

the boundary e1 = (0, 1) and e2 = (1, 0), the equilibrium still remains the same.

Remark 17. A natural question that arises is whether or not the continuous in-

clusion property is easily verifiable for an economy. In the example above we have

demonstrated that it is easily verifiable, and it can be used to obtain the existence of

a Walrasian equilibrium. Below we present another example in which one can easily

check that the continuous inclusion property does not hold, and there is no Walrasian

equilibrium. In this example, the preferences are continuous, and the initial endow-

ment is not an interior point of the consumption set.

Example 2. There are two agents I = {1, 2}, and two goods x and y. The payoff

functions are given by u1(x, y) = x + y and u2(x, y) = y, which are continuous. The

initial endowments are e1 = (1
2
, 0) and e2 = (1

2
, 1). The consumption sets for both

agents are [0, 2]× [0, 2]. In this example, one can easily see that there is no Walrasian
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equilibrium, but a quasi equilibrium ((x∗, y∗), p∗) exists, where (x∗, y∗) = (x∗i , y
∗
i )i∈I ,

and (x∗1, y
∗
1) = (1, 0), (x∗2, y

∗
2) = (0, 1), p∗ = (0, 1).

In this example, the continuity inclusion property does not hold. Consider

agent 1 in the above quasi equilibrium. Since p∗ × e1 = 0, the budget set of agent 1

is B1(p∗) = {(x1, 0) : x1 ∈ [0, 2]}. In addition, the set of allocations for agent 1 which

are preferred to (x∗1, y
∗
1) is P1(x∗, y∗) = {(x1, y1) ∈ [0, 2]× [0, 2] : x1 + y1 > x∗1 + y∗1 =

1 + 0 = 1}. Thus, ψ1(p∗, (x∗, y∗)) = B1(p∗)∩P1(x∗, y∗) = {(x1, 0) : x1 ∈ (1, 2]}, which

is nonempty.

However, if we slightly perturb the price p∗ by assuming that it is q = (ε, 1− ε)

for sufficiently small 0 < ε < 1
4
, then the budget set of agent 1 is B1(q) = {(x1, y1) ∈

[0, 2] × [0, 2] : x1 · ε + y1 · (1 − ε) ≤ 1
2
ε}, which implies that x1 ≤ 1

2
and y1 ≤ 1

2
ε

1−ε <

1
6
. Thus, x1 + y1 < 1

2
+ 1

6
= 2

3
< 1 for all (x1, y1) ∈ B1(q), which implies that

ψ1(q, (x∗, y∗)) = B1(q) ∩ P1(x∗, y∗) = ∅.

Therefore, in any neighborhood O of ((x∗, y∗), p∗), there is a point ((x∗, y∗), q) ∈

O such that ψ1(q, (x∗, y∗)) = ∅, which implies that the continuity inclusion property

does not hold. It can be easily checked that the weaker condition discussed in Re-

mark 12 still fails in this example.

1.6 A Generalization of the GDN Lemma

In this section, using the fixed point theorem (Theorem 1), we provide a gen-

eralization of the Gale-Debreu-Nikaido (GDN) lemma to an infinite-dimensional com-

modity space with discontinuous excess demand correspondences.
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1.6.1 Results

Let X be a Hausdorff locally convex linear topological space, and E a closed,

convex cone of X having an interior point e. Denote E∗ = {p ∈ X∗ : p · x ≤

0 for all x ∈ E} 6= {0}; that is, E∗ is the dual cone of E. Let4 = {p ∈ E∗ : p·e = −1}

and Z : 4→ 2X be an excess demand correspondence. Given p ∈ 4, let Y (p) = {x ∈

X : p · x ≤ 0} and Γ(p) = Y (p) ∩ Z(p).

Theorem 7. If Γ is nonempty and convex valued, and satisfies the continuous inclu-

sion property, where X∗ is endowed with the weak∗ topology, then ∃p∗ ∈ 4 such that

Z(p∗) ∩ E 6= ∅.

Proof. Define a correspondence Π from E to 4 as follows: for each x ∈ E,

Π(x) = argmaxp∈4(p · x).

By Alaoglu’s Theorem, 4 is weak∗ compact. By Berge’s maximum theorem (see

Berge (1963)), Π is nonempty, convex and weak∗ compact valued, and upper hemi-

continuous.

Define the correspondence Ψ from E ×4 to E ×4 as Ψ(x, p) = Γ(p)×Π(x)

for each (x, p) ∈ E×4. It is obvious that Ψ is nonempty and convex valued. For each

p0 ∈ 4, since Γ is convex valued and has the continuous inclusion property, there

exists a weak∗ open neighborhood Op0 of p0, and a nonempty, convex valued and

weak∗ upper hemicontinuous correspondence Fp0 : Op0 → 2E such that Fp0(q) ⊆ Γ(q)

for any q ∈ Op0 . Let Φ(x, p) = Fp0(p) × Π(x) for (x, p) ∈ E × Op0 . Then Φ is a

sub-correspondence of Ψ on E × Op0 , which is nonempty, convex-valued and upper
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hemicontinuous. Therefore, Ψ has the continuous inclusion property.

By Theorem 1, there exists (x∗, p∗) ∈ E × 4 such that (x∗, p∗) ∈ Ψ(x∗, p∗).

That is,

1. p∗ · x∗ ≥ p · x∗ for any p ∈ 4;

2. x∗ ∈ Z(p∗) and p∗ · x∗ ≤ 0.

Combining (1) and (2), we have p ·x∗ ≤ p∗ ·x∗ ≤ 0 for any p ∈ 4, which implies that

x∗ ∈ E. Therefore, Z(p∗) ∩ E 6= ∅ for some p∗ ∈ 4.

Below, we provide an alternative proof using Corollary 1.

Alternative Proof. Since Γ has the continuous inclusion property, for each p ∈ 4,

there exists an open neighborhood Op and a nonempty correspondence Gp : Op → 2X

such that Gp(q) ⊆ Γ(q) for any q ∈ Op and coGp has a closed graph. As in the proof

of Theorem 1, one can find a nonempty, convex and compact valued, weak∗ upper

hemicontinuous correspondence G : 4 → 2X which is a sub-correspondence of Γ.

Define the correspondence F : 4→ 24 by F (p) = {q ∈ 4 : q ·x > 0 for all x ∈ G(p)}.

Fix q ∈ 4. As in the proof of Yannelis (1985, Theorem 3.1), one can easily show that

W = F l(q), where W = {p ∈ 4 : G(p) ⊆ Vq} and Vq = {x ∈ X : q · x > 0}. The set

W is weak∗ open since G is weak∗ upper hemicontinuous. Consequently, F has weak∗

open lower sections, and hence has the continuous inclusion property.21 In addition,

by the definition of F , p /∈ F (p) for every p ∈ 4. Since 4 is nonempty, convex and

weak∗ compact, by Corollary 1, there exists a point p∗ ∈ 4 such that F (p∗) = ∅; that

21The continuous inclusion property of F holds on the subset 4 of X∗, which is endowed
with the weak∗ topology.
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is,

for any q ∈ 4,∃x ∈ G(p∗), q · x ≤ 0. (1.1)

We will show that (1.1) implies Z(p∗) ∩ E 6= ∅ for some p∗ ∈ 4. Suppose

otherwise, then there exists a continuous linear functional which strictly separates

the convex compact set G(p∗) ⊆ Z(p∗) from the closed convex set E; that is,

there exists r ∈ X∗, r 6= 0 such that

inf
x∈G(p∗)

r · x > sup
x∈E

r · x ≥ 0.

(1.2)

Without loss of generality, we can take r to be in 4.22 It follows from (1.2) that

r · x > 0 for any x ∈ G(p∗), a contradiction to (1.1).

Therefore, Z(p∗) ∩ E 6= ∅ for some p∗ ∈ 4.

1.6.2 An Example

Below, we provide an example which indicates how Theorem 7 can be used

to prove the existence of an equilibrium. Notice that the preferences of both agents

below are neither upper hemicontinuous nor lower hemicontinuous, and hence none of

the previous equilibrium existence theorems in the literature are applicable. However,

an equilibrium exists by virtue of our Theorem 7

Example 3. Consider the following 2-agent 2-good economy:

1. The set of available allocations for both agents are X1 = X2 = [0, 1] × [0, 1],

X = X1 ×X2.

22If r /∈ 4, then the fact e is an interior point of E implies that r · e < 0, and we can
replace r by r

−r·e .
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2. The initial endowments are given by e1 = (2
3
, 1

3
) and e2 = (1

3
, 2

3
).

3. For agent 1 and an allocation x1 = (x1
1, x

2
1) and x2 = (x1

2, x
2
2), agent 1’s prefer-

ence only depends on his own allocation:

a if x1
1 > x2

1, then P1(x1, x2) = {(y, z) : z > y ≥ 0, y + z ≥ 1};

b if x1
1 < x2

1, then P1(x1, x2) = {(y, z) : y > z ≥ 0, y + z ≥ 1};

c if x1
1 = x2

1, then P1(x1, x2) = {(y, y) : y > x1
1}.

The preference of agent 2 is defined similarly.

Note that Pi is neither upper hemicontinuous nor lower hemicontinuous, i = 1, 2.

For any price p = (p1, 1− p1), the budget set of agent 1 is

B1(p) = {(x1
1, x

2
1) ∈ X1 : p1 · x1

1 + (1− p1) · x2
1 ≤

1

3
(1 + p1)},

and the budget set of agent 2 is

B2(p) = {(x1
2, x

2
2) ∈ X2 : p1 · x1

2 + (1− p1) · x2
2 ≤

1

3
(2− p1)}.

The demand correspondence for agent i is defined as

Di(p) = {x ∈ Bi(p) : Pi(x) ∩Bi(p) = ∅}.

It is easy to see that Di is nonempty and convex valued. In addition, given any price

p, x1 = (1+p1
3
, 1+p1

3
) ∈ D1(p) and x2 = (2−p1

3
, 2−p1

3
) ∈ D2(p).

One can define functions ψ1 and ψ2 such that ψ1(p) = (1+p1
3
, 1+p1

3
) and ψ2(p) =

(2−p1
3
, 2−p1

3
). Since ψi(p) ∈ Di(p) for every p, Di has the continuous inclusion property

for any i. Then D1 +D2 also satisfies the continuous inclusion property, Theorem 7

can be used to show the existence of an equilibrium. Indeed, (x1
1, x

2
1) = (x1

2, x
2
2) = (1

2
, 1

2
)

and (p1, p2) = (1
2
, 1

2
) is an equilibrium.
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1.6.3 Remarks

We show that Theorem 7 implies the standard Gale-Debreu-Nikaido lemma,

see Debreu (1956).

Corollary 7. Let X = Rl and Z : 4 → 2X be an excess demand correspondence

satisfying the following conditions:

1. Z is nonempty, convex and compact valued, and upper hemicontinuous;

2. for every p ∈ 4, ∃z ∈ Z(p) such that p · z ≤ 0 .

Then, ∃p∗ ∈ 4 such that Z(p∗) ∩ Rl
− 6= ∅.

Proof. Given p ∈ 4, let Y (p) = {z ∈ Rl : p · z ≤ 0} and X(p) = Y (p) ∩ Z(p).

Due to (2), X is nonempty. Since both Y and Z are convex valued and upper

hemicontinuous, X is also convex valued and upper hemicontinuous. Thus, X has

the continuous inclusion property. Then the result follows from Theorem 7.

Remark 18. Yannelis (1985) proved the market equilibrium theorem of Gale-Debreu-

Nikaido for an infinite dimensional commodity space by assuming that the excess

demand correspondence is upper demicontinuous. In our theorem, the excess demand

correspondence may not be continuous, hence not upper demicontinuous.

Suppose that X is an AM-space with the unit e, X+ be the positive cone

and 4 = {p ∈ X∗+ : p · e = 1}. Aliprantis and Brown (1983) worked with an excess

demand function Z : 4→ X instead of an excess demand correspondence, and proved

the following result.

Corollary 8 (Aliprantis and Brown (1983)). Suppose that
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1. there exists a consistent locally convex topology on X such that Z is weak∗

continuous;

2. Z satisfies the Walras law, that is, p · Z(p) = 0 for all p ∈ 4.

Then there exists a point p ∈ 4 such that Z(p) ≤ 0.

It is obvious that this result is covered by our Theorem 7, since Γ(p) = Z(p) in

their setting. As a consequence, Γ is a weak∗ continuous function and the continuous

inclusion property automatically holds.
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CHAPTER 2
DISCONTINUOUS GAMES WITH INCOMPLETE INFORMATION

Games with discontinuous payoffs have been used to model a variety of im-

portant economic problems; for example, Hotelling location games, Bertrand compe-

tition, and various auction models. The seminal work by Reny (1999) proposes the

“better reply security” condition and proves the equilibrium existence in quasicon-

cave compact games with discontinuous payoffs. Since the hypotheses are sufficiently

simple and easily verified, the increasing applications of his results has widened sig-

nificantly in recent years, as evidenced by Jackson and Swinkels (2005) and Monteiro

and Page (2008) among others.1

In the previous chapter, we consider discontinuous games with complete infor-

mation. In this chapter, we consider discontinuous games with incomplete informa-

tion; that is, games with a finite set of players and each of whom is characterized by

his own private information, a strategy set, a state dependent (random) utility func-

tion and a prior. This problem arises naturally in situations where privately informed

agents behave strategically. Because of its importance, the research trend in this field

has been quite active since Harsanyi’s seminal work. The purpose of this chapter is to

provide new results on pure/behavioral strategy equilibria for games with incomplete

information and discontinuous payoffs.

1A number of papers appeared in the topic of discontinuous games and further exten-
sions have been obtained in several directions. See the introduction of Chapter 1 for more
references.
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Firstly, we consider the existence of pure strategy equilibria in games where all

players adopt the Bayesian reasoning. We introduce the notions of finite/finite∗ payoff

security and adopt the aggregate upper semicontinuity condition in the ex post games.

We show that the (ex ante) Bayesian game is payoff secure and reciprocal upper

semicontinuous, and hence Reny’s theorem is applicable and a pure strategy Bayesian

equilibrium exists. A key issue here is that the quasiconcavity of the Bayesian game

cannot be guaranteed even if all ex post games are quasiconcave. We show by means of

counterexamples that the concavity and finite payoff security conditions of the ex post

games are both necessary for the existence of a pure strategy Bayesian equilibrium.2

Secondly, we study the equilibrium existence problem in discontinuous games

under incomplete information and ambiguity. The Bayesian paradigm has been con-

stantly criticized since Ellsberg (1961), and the non-expected utility theory has re-

ceived much attention. In the framework of Bayesian preferences, the results on the

existence of pure/behavioral strategy equilibria in discontinuous games with incom-

plete information (see He and Yannelis (2015b, 2016a), and Carbonell-Nicolau and

McLean (2015)) typically build on the equilibrium existence result of Reny (1999).

However, the equilibrium existence result in the incomplete information framework

is not a straightforward adaptation of the result of Reny (1999). In order to general-

ize the result of Reny (1999) to asymmetric information, one has to introduce some

exogenous assumptions. In this chapter, we adopt the maximin expected utility of

2Based on a different approach using the communication device, Jackson et al. (2002)
studied discontinuous games with asymmetric information.



www.manaraa.com

48

Gilboa and Schmeidler (1989) (see also de Castro and Yannelis (2009)).3 Our result

shows that by working with the maximin preferences, the existence of equilibrium in

games with incomplete information follows directly from the existence of equilibrium

for every ex post game. As a result, the maximin framework solves the equilibrium

existence issue without introducing any additional conditions. To demonstrate the

usefulness of this result, we present a timing game with asymmetric information as

an illustrative example, which has an equilibrium when players have maximin prefer-

ences, but has no equilibrium when the Bayesian reasoning is adopted.

Finally, we provide a new existence result on behavioral strategy equilibria

for Bayesian games with discontinuous payoffs. Our result is based on a Bayesian

generalization of the clever condition called “disjoint payoff matching”, which was

introduced by Allison and Lepore (2014) for a normal form game. The advantage

of this condition is that one only needs to check the payoff at each strategy profile

itself. The standard payoff security-type condition forces one to check the payoffs

in the neighborhood of each strategy profile, which is more demanding. Thus, our

condition is relatively straightforward, and the equilibrium existence result can be

easily verified for a large class of Bayesian games. Our result widens the applications

in economics as we can cover situations that previous results in the literature are not

readily applicable. As an illustrative example, we provide an application to an all-pay

auction with general tie-breaking rules.

3For some recent applications of maximin preference in general equilibrium theory and
game theory, see, for example, de Castro, Pesce and Yannelis (2011), de Castro, Liu and
Yannelis (2015), and He and Yannelis (2015c).
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This chapter is based on He and Yannelis (2015b, 2016a,b), and is organized

as follows. Section 2.1 proves the existence of a pure strategy Bayesian equilibrium,

and collects some discussions and possible extensions. Section 2.2 presents the result

on the existence of equilibrium when players adopt maximin preferences. Section 2.3

provides the result on the existence of behavioral strategy equilibria.

2.1 Existence of Pure Strategy Equilibria: An Extension of Reny’s

Existence Theorem

2.1.1 Model

2.1.1.1 Discontinuous games with asymmetric information

We consider an asymmetric information game

G = {Ω, (ui, Xi,Fi)i∈I}.

• There is a finite set of players, I = {1, 2, · · · , N}.

• Ω is a countable state space representing the uncertainty of the world, F is

the power set of Ω.

• Fi is a partition of Ω, denoting the private information of player i. Fi(ω)

denotes the element of Fi including the state ω.

• Player i’s action space Xi is a nonempty, compact, convex subset of a topological

vector space, X =
∏

i∈I Xi.

• For every i ∈ I, ui : X × Ω → R is a random utility function representing

the (ex post) preference of player i.

A game G is called a compact game if ui is bounded for every i ∈ I; that is,



www.manaraa.com

50

∃M > 0, |ui(x, ω)| ≤ M for all x ∈ X and ω ∈ Ω, 1 ≤ i ≤ N . A game G is said

to be quasiconcave (resp. concave) if ui(·, x−i, ω) is quasiconcave (resp. concave)

for every i ∈ I, x−i ∈ X−i and ω ∈ Ω. For every ω ∈ Ω, the ex post game is Gω =

(ui(·, ω), Xi)i∈I . Suppose that each player has a private prior πi on F such that

πi(E) > 0 for any E ∈ Fi. The weighted ex post game is G′ω = (wi(·, ω), Xi)i∈I ,

where wi(·, ω) is a mapping from X to R and wi(·, ω) = ui(·, ω)πi(ω) for each ω ∈ Ω.

For every player i, a strategy is an Fi-measurable mapping from Ω to Xi.

Let

Li = {fi : Ω→ Xi : fi is Fi-measurable},

then Li is a convex and compact set endowed with the product topology. L =
∏

i∈I Li.

Given a strategy profile f ∈ L, the expected utility of player i is

Ui(f) =
∑
ω∈Ω

ui(fi(ω), f−i(ω), ω)πi(ω),

then Ui(·) is also bounded by M . Therefore, the (ex ante) Bayesian game of G

is G0 = (Ui, Li)1≤i≤N , which is compact and concave if the game G is compact and

concave. A strategy profile f ∈ L is said to be a Bayesian equilibrium if for each

player i and any gi ∈ Li,

Ui(f) ≥ Ui(gi, f−i).

Remark 19. It is well known that quasiconcavity may not be preserved under sum-

mation or integration. Thus, the Bayesian game G0 may not be quasiconcave even if

G is quasiconcave.
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2.1.1.2 Deterministic case

Hereafter, Gd = (Xi, ui)
N
i=1 will denote a deterministic discontinuous game;

that is, Ω is a singleton. The following definitions strengthen the notion of payoff se-

curity in Reny (1999).

Definition 2. In the game Gd, player i can secure an n-dimensional payoff (α1, · · · , αn) ∈

Rn at (xi, x
1
−i, · · · , xn−i) ∈ Xi ×Xn

−i if there is xi ∈ Xi, such that ui(xi, y
k
−i) ≥ αk for

all yk−i in some open neighborhood of xk−i, 1 ≤ k ≤ n.

Definition 3. The game Gd is n-payoff secure if for every i ∈ I and (xi, x
1
−i, · · · , xn−i) ∈

Xi ×Xn
−i, ∀ε > 0, player i can secure an n-dimensional payoff

(
ui(xi, x

1
−i)− ε, · · · , ui(xi, xn−i)− ε

)
at (xi, x

1
−i, · · · , xn−i) ∈ Xi ×Xn

−i. The game Gd is said to be finitely payoff secure

if it is n-payoff secure for any n ∈ N.4

If n = 1, it is called payoff secure.

Given x ∈ X, let u(x) = (u1(x), · · · , uN(x)) be the payoff vector of the game

Gd. Define Γd = {(x, u(x)) ∈ X ×R : x ∈ X}; that is, the graph of the payoff vector

u(·), then Γd denotes the closure of Γd.

The following definition is due to Reny (1999).

4It is clear that the uniform payoff security condition of Monteiro and Page (2007)
implies our finite payoff security condition. See Subsection 2.1.3.2 for further discussion of
this point.
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Definition 4. The game Gd is better-reply secure if whenever (x∗, α∗) ∈ Γd and

x∗ is not a Nash equilibrium, some player j can secure a payoff strictly above α∗i at

x∗.

In their pioneer paper, Dasgupta and Maskin (1986) proposed the following

condition which is weaker than the upper semicontinuity condition of the utility

functions.

Definition 5. A game Gd is said to be aggregate upper semicontinuous if the

summation of the utility functions of all players is upper semicontinuous.5

The following generalization is due to Simon (1987), which is called compli-

mentary discontinuity or reciprocal upper semicontinuity.

Definition 6. A game Gd is reciprocal upper semicontinuous if for any (x, α) ∈

Γd \ Γd, there is a player i such that ui(x) > αi.

Reny (1999) showed that the game Gd is better reply secure if it is payoff

secure and reciprocal upper semicontinuous.

Theorem 8 (Reny (1999)). Every compact, quasiconcave and better-reply secure de-

terministic game has a Nash equilibrium.

We will use this theorem to establish our existence results. One may easily

develop analogous definitions of “n-payoff security” in the framework of many recent

papers.

5Carmona (2009) proved the existence of Nash equilibria in compact, quasiconcave games
via weak versions of both upper semicontinuity and payoff security.
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2.1.2 Existence of Pure Strategy Bayesian Equilibrium

In this section, we will show the existence of pure strategy Bayesian equilibrium

in discontinuous games with asymmetric information.

First, we shall prove Propositions 2 and 3, which provide sufficient conditions

to guarantee the payoff security of a Bayesian game.

Proposition 2. If the weighted ex post game G′ω is finitely payoff secure at every state

ω ∈ Ω and ui(x, ·) is Fi-measurable for every x ∈ X and i ∈ I, then the Bayesian

game G0 is payoff secure.

Proof. For any i ∈ I, suppose that Fi = {E1, · · · , Ek, · · · } is the information partition

of player i, M is the bound for ui. Given any ε > 0, there exists a positive integer

K > 0 such that πi(∪Kk=1Ek) > 1 − ε
6M

. For 1 ≤ k ≤ K, there exists a finite subset

E ′k ⊆ Ek such that πi(Ek \ E ′k) < ε
6KM

and πi(E
′
k) > 0.

Fix ωk ∈ E ′k such that πi(ωk) > 0. Given any f ∈ L, because ui(x, ·) and fi(·)

are both Fi-measurable,

ui(fi(ω), f−i(ω), ω) = ui(fi(ωk), f−i(ω), ωk)

for any ω ∈ Ek, 1 ≤ k ≤ K.

Since G′ωk
is finitely payoff secure, there exists a point yki ∈ Xi, such that

wi(y
k
i , y

ω
−i, ωk) ≥ wi(fi(ωk), f−i(ω), ωk)−

ε

3
πi(ωk)

for all yω−i in some open neighborhood Oω of f−i(ω), ∀ω ∈ E ′k.
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Let

gi(ω) =


yki , if ω ∈ Ek for 1 ≤ k ≤ K,

fi(ω), otherwise.

Then by construction gi is Fi-measurable.

Choose the open setO in L−i such thatO =
(∏

1≤k≤K(
∏

ω∈E′k
Oω ×X

Ek\E′k
−i )

)
×

X
Ω\∪1≤k≤KEk

−i ,

Ui(gi, g
′
−i) =

∑
E∈Fi

∑
ω∈E

wi(gi(ω), g′−i(ω), ω)

≥
K∑
k=1

∑
ω∈E′k

wi(gi(ω), g′−i(ω), ω)−M

(
πi(Ω \ (∪Kk=1Ek)) +

K∑
k=1

πi(Ek \ E ′k)

)

≥
K∑
k=1

∑
ω∈E′k

wi(y
k
i , g
′
−i(ω), ωk)

πi(ω)

πi(ωk)
− ε

3

≥
K∑
k=1

∑
ω∈E′k

[wi(fi(ωk), f−i(ω), ωk)−
ε

3
πi(ωk)]

πi(ω)

πi(ωk)
− ε

3

≥
K∑
k=1

∑
ω∈E′k

wi(fi(ωk), f−i(ω), ω)− 2ε

3

≥
∑
E∈Fi

∑
ω∈E

wi(fi(ωk), f−i(ω), ω)− 2ε

3
−M

(
πi(Ω \ (∪Kk=1Ek)) +

K∑
k=1

πi(Ek \ E ′k)

)

> Ui(f)− ε

for every g′−i ∈ O. Thus, the game G0 is payoff secure.

Remark 20. Note that the finitely payoff security of the weighted ex post game G′ω =

(wi(·, ω), Xi)i∈I is slightly weaker than the finitely payoff security of the ex post game

Gω = (ui(·, ω), Xi)i∈I , where ui is the ex post payoff function and wi(·, ω) = ui(·, ω) ·

πi(ω) for every i ∈ I. These two conditions will be equivalent if πi(ω) > 0 for any

i ∈ I and ω ∈ Ω.



www.manaraa.com

55

In Proposition 2, the ex post utility functions are required to be private in-

formation measurable. This assumption can be dropped if the finitely payoff security

condition is strengthened accordingly.

Definition 7. An asymmetric information game G is n∗-payoff secure if for every

i ∈ I, every (xi, x
1
−i, · · · , xn−i) ∈ Xi × Xn

−i and every (ω1, · · · , ωn) ⊆ D for some

D ∈ Fi, ∀ε > 0, there is xi ∈ Xi, such that ui(xi, y
k
−i, ωk) ≥ ui(xi, x

k
−i, ωk)− ε for all

yk−i in some open neighborhood of xk−i, 1 ≤ k ≤ n.

The game G is said to be finitely∗ payoff secure if it is n∗-payoff secure for

any n ∈ N.

Proposition 3. The Bayesian game G0 is payoff secure if G is finitely∗-payoff secure.

Proof. As in the proof of Proposition 2, we could find some positive integer K and

finite set E ′k for each 1 ≤ k ≤ K satisfying the same conditions therein.

Given any f ∈ L. Since G is finitely∗ payoff secure, for each 1 ≤ k ≤ K, there

exists a point yki ∈ Xi, such that

ui(y
k
i , y

ω
−i, ω) ≥ ui(fi(ω), f−i(ω), ω)− ε

3

for all yω−i in some open neighborhood Oω of f−i(ω), ∀ω ∈ E ′k.

Let

gi(ω) =


yki , if ω ∈ Ek for 1 ≤ k ≤ K,

fi(ω), otherwise.

Then the rest of the proof proceeds similarly as in the proof of Proposition 2.
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Proposition 4. In the game G, if the weighted ex post game G′ω is aggregate upper

semicontinuous at every state ω ∈ Ω, then the Bayesian game G0 is reciprocal upper

semicontinuous.

Proof. By way of contradiction, suppose that the Bayesian game G0 is not reciprocal

upper semicontinuous. Then there exists a sequence {fn} ⊆ L, fn → f and U(fn)→

α as n → ∞, where U(f) = (U1(f), · · · , UN(f)) and α = (α1, · · · , αN) ∈ RN .

Ui(f) ≤ αi for 1 ≤ i ≤ N and U(f) 6= α.

Denote ε = max1≤i≤N(αi − Ui(f)), ε > 0. Thus,

∑
i∈I

Ui(f) ≤
∑
i∈I

αi − ε.

There exists a finite subset E ⊆ Ω such that πi(Ω \E) < ε
2NM

for every i ∈ I, where

M is the bound of ui for all i.

Then for any i ∈ I, Ui(f
n) can be divided into two parts: µni =

∑
ω∈E wi(f

n(ω), ω)

and νni =
∑

ω/∈E wi(f
n(ω), ω), Ui(f

n) = µni + νni . Let µn = {µni }i∈I , since {µn}n∈N is

bounded, there is a subsequence, say itself, which converges to some µ ∈ RN . Since

νni ≤Mπi(Ω \ E) < ε
2N

for any i ∈ I and n ∈ N, µi ≥ αi − ε
2N

for every i ∈ I.

At each state ω ∈ E and i ∈ I, since wi(f
n(ω), ω) is bounded, there is a

subsequence which converges to some βωi . Since there are only finitely many players

and states, we can assume without loss of generality that wi(f
n(ω), ω) → βωi as

n→∞, then
∑

ω∈E β
ω
i = µi.

Since fn(ω)→ f(ω) for every ω ∈ E and G′ω is aggregate upper semicontinu-
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ous, ∑
i∈I

wi(f(ω), ω) ≥
∑
i∈I

βωi .

Thus,

∑
i∈I

Ui(f) ≥
∑
i∈I

∑
ω∈E

wi(f(ω), ω) ≥
∑
i∈I

∑
ω∈E

βωi =
∑
i∈I

µi ≥
∑
i∈I

αi −
ε

2
,

which is a contradiction.

By combining Theorem 8, Proposition 2/3 and Proposition 4, we obtain the

following result which is an extension of Reny (1999) to Bayesian games with discon-

tinuous payoffs.

Theorem 9. Suppose that an asymmetric information game G is compact, the cor-

responding Bayesian game G0 is quasiconcave, and the weighted ex post game G′ω is

aggregate upper semicontinuous at each state ω. Then a Bayesian equilibrium exists

if either of the following conditions holds.

1. The weighted ex post game G′ω is finitely payoff secure at every state ω ∈ Ω and

ui(x, ·) is Fi-measurable for every x ∈ X and i ∈ I.

2. The game G is finitely∗ payoff secure.

Remark 21. Note that the (ex ante) Bayesian game G0 is assumed to be quasicon-

cave. However, Example 4 below indicates that the theorem may fail if we only require

that G is quasiconcave. To impose conditions in the primitive stage, one possible al-

ternative is to require that G be concave. However, the concavity of the utility function

implies that it is continuous on the interior of its domain, and hence the discontinuity
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only arises on the boundary. This is a rather strong assumption and will deter many

possible applications.

2.1.3 Discussion

In this section, we shall first provide two examples to show the necessity of

the quasiconcavity and the finite payoff security conditions. In addition, we shall also

compare our notion of finite payoff security and the uniform payoff security condition

of Monteiro and Page (2007), and discuss the possible extension of Theorem 9 to the

setting of a continuum of states based on the uniform payoff security condition.

2.1.3.1 Two counterexamples

To guarantee the existence of a Bayesian equilibrium, the expected utility of

each player is required to be quasiconcave in Theorem 9. Example 4 below shows

that this condition cannot be dropped, even if all other conditions are satisfied and

the ex post utility function is quasiconcave itself.

Example 4 (Importance of concavity).

Consider the following game G. There are two players I = {1, 2} competing

for a object. The strategy spaces for players 1 and 2 are respectively X and Y ,

X = Y = [0, 1]. Player 1 has only one possible private value 1, and player 2 has two

possible private values 0 and 1.

Denote a = (1, 1) and b = (1, 0) (the first component is the private value of

player 1 and the second component is the private value of player 2). The state space



www.manaraa.com

59

is Ω = {a, b}. The information partitions and priors are as follows:

F1 = {{a, b}}, π1(a) = π1(b) =
1

2
;

F2 = {{a}, {b}}, π2(a) = π2(b) =
1

2
.

For ω = a, b, the utility function of player 1 is

u1(x, y, ω) =


1− x, if x ≥ y

0, otherwise

.

Then u1(x, y, ·) is measurable with respect to F1 for any (x, y) ∈ X × Y .

The utility function of player 2 is

u2(x, y, a) =


1− y, if y > x

0, if y ≤ x

and

u2(x, y, b) =


−y, if y > x

−y
2
, if y ≤ x

.

1. At both states, when there is a tie, player 1 will take the good and player 2 gets

nothing.

2. At state b, the private value of player 2 is 0, bidding for positive price will harm

both, thus player 2 will be punished when he bids more than 0 even if he loses

the game.

The ex post games Ga and Gb are 2-payoff secure. Consider the ex post game

Ga and player 1. Given ε > 0, x ∈ X and (y1, y2) ∈ Y × Y . Assume y1 ≥ y2 without

loss of generality. There are three possible cases.
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1. If y1 ≤ x, then let player 1 bid x = min{x+ ε
2
, 1}. For i = 1, 2, y′i ≤ min{x+ ε

2
, 1}

for any y′i in a small neighborhood of yi, hence the payoff of player 1 is at least

1− x− ε
2
.

2. If y2 > x, then let player 1 bid x = x and his payoff cannot be worse off.

3. If y2 ≤ x < y1, then let player 1 bid x = x + δ such that x + δ < y1 and

0 < δ < ε.

Similarly, one can show the 2-payoff security of player 2 at state a and b. Therefore,

the ex post game is 2-payoff secure at each state. It is easy to see that the summations

of ex post utility functions are upper semicontinuous at both states, and the assump-

tions of quasiconcavity and compactness are satisfied. Thus, there are Nash equilibria

for both ex post games. At state a, the unique equilibrium is (1, 1); at state b, the

unique equilibrium is (0, 0).

However, there is no Bayesian equilibrium in this game.6 Suppose (x, y) is an

equilibrium, where y = (y(a), y(b)). In state b, player 2 will always choose y(b) = 0,

thus player 1 can guarantee himself a positive payoff by choosing x = 0. But if x < 1,

player 2 has no optimal strategy at state a. Thus, player 1 has to choose x = 1 and

gets 0 payoff, a contradiction.

Remark 22. In Example 4, although the ex post utility function is quasiconcave at

both states, the expected utility function is not quasiconcave, and hence there is no

6Note that there is mixed strategy equilibria for this game: for example, Bidder 1’s
strategy is 1

2δ0 + 1
2U([0, 1

2 ]), Bidder 2’s strategy is 0 when his value is 0, and U([0, 1
2 ]) when

his value is 1, where δ0 is the delta measure concentrated at 0 and U([0, 1
2 ]) is the uniform

distribution on [0, 1
2 ]. However, we only focus on pure strategies.
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Bayesian equilibrium.

In Theorem 9, we strengthen the payoff security of Reny (1999) to finite payoff

security . The second example shows that the payoff security of every ex post game

cannot guarantee the payoff security of the Bayesian game.

Example 5 (Ex post payoff security does not imply ex ante payoff security).

Consider the following game: the player space is I = {1, 2, 3}, the state space

is Ω = {a, b}, and the information partitions of all players are F1 = F2 = {{a, b}}

and F3 = {{a}, {b}}. Players have common prior π(a) = π(b) = 1
2
. The action space

of player i is Xi = [0, 1], i = 1, 2, 3. The games L and R are listed below.

In both states, players 1 and 2 will play the game L if x3 = 0 and the game

R otherwise. Player 1’s action is in the left and player 2’s action is in the top. The

0 (0, 1) 1
0 (1, 6) (0, 7) (3, 7)

(0, 1) (5, 4) (4, 5) (3, 7)
1 (6, 3) (6, 3) (4, 5)

0 (0, 1) 1
0 (14, 14) (16, 10) (16, 10)

(0, 1) (13, 15) (14, 14) (14, 14)
1 (13, 15) (12, 15) (12, 15)

Figure 2.1: Games L & R

utility function of player 3 is defined as follow:

u3(x1, x2, x3, ω) =


1, if x3 = 0 at ω = a or x3 ∈ (0, 1] at ω = b;

0, otherwise.

Below we study the ex post game Ga and show that it is payoff secure but not 2-payoff
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secure. The same result holds for the ex post game Gb. However, the Bayesian game

is not payoff secure.

In the game L, player 1 can choose the dominant strategy x1 = 1 and player

2 can choose the dominant strategy x2 = 1, thus the game L is payoff secure. In the

game R, player 1 can choose the dominant strategy x1 = 0 and player 2 can choose

the dominant strategy x2 = 0, thus the game R is payoff secure.

Suppose state a realizes. The payoff of player 3 is secured since he can always

choose x3 = 0, which could guarantee his highest payoff. For players 1 and 2, if player

3’s action x3 = 0, then players 1 and 2 will play the game L and it is payoff secure

since if x3 deviates in a small neighborhood, then players 1 and 2 will play the game R

and their payoffs are strictly higher; if x3 stays unchanged and they are still in game

L, then the payoff security of the game L supports our claim. If player 3’s action

x3 ∈ (0, 1], they will play game R and it is payoff secure since a sufficiently small

neighborhood of x3 is still included in (0, 1] and the game R itself is payoff secure.

Therefore, the ex post game Ga is payoff secure.

However, this game is not 2-payoff secure. For example, let x1 = 0, (x1
2, x

1
3) =

(1, 0) and (x2
2, x

2
3) = (1, 1), there is no action which could guarantee that player 1 can

secure the 2 dimensional payoff vector (3, 16). Similarly, one could show that the ex

post game Gb is also payoff secure but not 2-payoff secure.

Finally, we verify our claim that the Bayesian game is not payoff secure. Let

the strategy of player 3 be x3 = (x3(a), x3(b)) = (0, 1), the expected utilities for players

1 and 2 are listed as the following game E. Then player 1 cannot secure his payoff if
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0 (0, 1) 1
0 (15

2
, 10) (8, 17

2
) (19

2
, 17

2
)

(0, 1) (9, 19
2

) (9, 19
2

) (17
2
, 21

2
)

1 (19
2
, 9) (9, 9) (8, 10)

Figure 2.2: Game E

x1 = 1 and x2 = 0, and player 2 cannot secure his payoff if x1 = 0 and x2 = 0.

Moreover, this game does not have a Bayesian equilibrium. It is easy to see

that player 3 will choose x3(a) = 0 and x3(b) ∈ (0, 1]. Consequently, the expected

payoff matrix of players 1 and 2 is E. However, the game E has no equilibrium.

Remark 23. The game in Example 5 is obviously compact and satisfies the private

information measurability requirement. We need to show that the Bayesian game is

quasiconcave. It is clear that the expected utility of player 3 is quasiconcave. Now we

consider players 1 and 2. Given x3 = (x3(a), x3(b)). If x3 = (0, 0), then players 1

and 2 will play the game L in both states. Their expected payoff matrix is L, which

is quasiconcave. If x3 ∈ (0, 1] × (0, 1], players 1 and 2 will play the game R in both

states, and hence their expected payoff matrix is the quasiconcave game R. Otherwise,

players 1 and 2 will play the game L at one state and the game R at the other state.

That is, their expected payoff matrix is E, which is also quasiconcave.

2.1.3.2 Comparison with Monteiro and Page (2007)

Below, we compare our notion of finite payoff security with the uniform payoff

security of Monteiro and Page (2007).
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The following condition is due to Monteiro and Page (2007).

Definition 8. The game Gd is uniform payoff secure if for every i ∈ I and xi ∈

Xi, ∀ε > 0, there is xi ∈ Xi such that for every x−i ∈ X−i, ui(xi, y−i) ≥ ui(xi, x−i)−ε

for all y−i in some open neighborhood of x−i.

A game G is uniformly payoff secure if each player starting at any strategy

xi ∈ Xi has a strategy xi ∈ Xi he can move to in order to secure a payoff of ui(xi, x−i)

against all possible small deviations of all strategy profiles of others. It is obvious

that the uniform payoff security condition is stronger than our finite payoff security

condition. Below, we provide an example which shows that the uniform payoff security

is strictly stronger than the finite payoff security condition.

Example 6. Given a deterministic game G such that I = {1, 2}, X1 = X2 = [0, 1],

u1(x1, x2) =



−1, if x1 < x2 <
1
2
(x1 + 1);

0, if x1 = x2 or x1 = 2x2 − 1;

1, otherwise.

and u2 ≡ 0.

We shall show that this game is finitely payoff secure, but not uniformly pay-

off secure. We only need to verify this for player 1. Fix arbitrary n ∈ N. Pick

(x1, x
1
2, . . . , x

n
2 ) ∈ X1 ×Xn

2 . Without loss of generality, assume that x1
2 < x2

2 < · · · <

xn2 . If xn2 < 1, then choose x1 = 1; if xn2 = 1, then choose x1 sufficiently close to 1

such that xn−1
2 < x1 < 1. In all these cases we can find a neighborhood Oxk2

of xk2 such

that u1(x1, y
k
2) ≥ u1(x1, x

k
2) for all yk2 ∈ Oxk2

, 1 ≤ k ≤ n.
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However, the uniform payoff security condition is not satisfied in this game.

Thus, the uniform payoff security condition is strictly stronger than the finite payoff

security condition.

2.1.3.3 Extension of Theorem 9 to a continuum of states

By modifying the uniform payoff security condition of Monteiro and Page

(2007) and adopting the standard absolute continuity condition of Milgrom and We-

ber (1985), Carbonell-Nicolau and McLean (2015) proved the existence of behav-

ioral/distributional strategy Bayesian equilibrium in the setting of a continuum of

states. They do not need to impose the quasiconcavity condition on the payoffs since

the concavity property is automatic by working with behavioral/distributional strate-

gies. We will show that our Theorem 9 can be extended to the setting of a continuum

of states by strengthening the finite payoff security to uniform payoff security.

The model of Bayesian games with a continuum of states is as follows.

• The set of players: I = {1, 2, . . . , N}.

• The set of actions available to each player: {Xi}i∈I . Each Xi is a nonempty

compact metric space endowed with the Borel σ-algebra B(Xi). LetX = ×ni=1Xi

and B(X) = ⊗i∈IB(Xi).

• The (private) information space for each player: Ti. Each Ti is a measurable

space endowed with a σ-algebra Ti. Let T = ×ni=1Ti and T = ⊗ni=1Ti.

• The payoff functions: {ui}i∈I . Each ui : X×Ti → R is a bounded measurable

mapping.



www.manaraa.com

66

• The information structure: λ, a probability measure on the measurable space

(T, T ) with marginal λi on Ti for each i ∈ I.

The following condition is an extension of Definition 8 to the case of incomplete

information games, and it is due to Carbonell-Nicolau and McLean (2015). Based

on this condition, Carbonell-Nicolau and McLean (2015) proved the existence of a

behavioral strategy equilibrium (see Theorem 1 therein).

Definition 9. The Bayesian game is uniformly payoff secure if for each i ∈ I, ε > 0,

and a behavioral strategy fi, there exists another behavioral strategy gi such that for

all (t, x−i), there exists a neighborhood Vx−i
of x−i such that

ui(ti, gi(ti), y−i) > ui(ti, fi(ti), x−i)− ε

for all y−i ∈ Vx−i
.

Below, we consider the purification of behavioral strategies. He and Sun (2014)

proposed the “relative diffuseness” condition as a characterization of the relation

between two kinds of diffuseness of information, and proved a purification theorem

for Bayesian games based on this condition.

For each i ∈ I, let (Ti, Ti, λi) be the private information space, and Fi ⊆ Ti be

the smallest σ-algebra relative to which ui is measurable. The σ-algebras Ti and Fi

will represent the diffuseness of information from the aspect of strategies and from the

aspect of payoffs, respectively. The probability spaces (Ti, Ti, λi) and (Ti,Fi, λi) will

be used to model the information space and the payoff-relevant information space.

For any nonnegligible subsetD ∈ Ti, the restricted probability space (D,FDi , λDi )
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is defined as follows: FDi is the σ-algebra {D ∩D′ : D′ ∈ Fi} and λDi the probability

measure re-scaled from the restriction of λi to FDi . Furthermore, (D, T Di , λDi ) can be

defined similarly.

Definition 10. Following the notations above, Fi is said to be setwise coarser than

Ti if for every D ∈ Ti with λi(D) > 0, there exists a Ti-measurable subset D0 of D

such that λi(D04D1) > 0 for any D1 ∈ FDi .

The following assumption due to He and Sun (2014) states that on any non-

negligible set D ⊆ Ti, T Di is always larger than FDi . That is, the strategy-relevant

diffuseness of information is essentially richer than the payoff-relevant diffuseness of

information.

Assumption 1 (RD). For each i ∈ I, (Ti, Ti, λi) is atomless and Fi is setwise coarser

than Ti.

Now we are ready to prove the existence of a pure strategy Bayesian equilib-

rium with a continuum of states.

Theorem 10. Suppose that

1. Assumption (RD) holds,7 ui is measurable with respect to Fi for each i ∈ I, and

λ = ⊗i∈Iλi;

2. the Bayesian game is uniformly payoff secure and that each t ∈ T , the map∑
i∈I ui(ti, ·) : X → R is upper semicontinuous.

7Instead, one can assume that (Ti, Ti, λi) is an atomless Loeb space/saturated space for
each i ∈ I. The purification result for Bayesian games still holds, see Loeb and Sun (2006)
and Wang and Zhang (2012).
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Then there exists a pure strategy Bayesian equilibrium.

Proof. By Theorem 1 of Carbonell-Nicolau and McLean (2015), there exists a behav-

ioral strategy Bayesian equilibrium f , and by Theorem 2 of He and Sun (2014), f

has a purification g, which is a pure strategy Bayesian equilibrium.

Remark 24. In an incomplete information game with finitely many states, one can

work with the k-payoff security condition, where k could be the number of all states in

the Bayesian game. However, as we consider a Bayesian game with countably many

states, we need to extend the k-payoff security to finite payoff security as we may

need to use a Bayesian game with arbitrarily finitely many states to approximate the

original Bayesian game. Monteiro and Page (2007) proved the existence of a mixed

strategy equilibrium m = (m1, . . . ,mn) with the stronger condition of uniform payoff

security in a simple deterministic setting. Indeed, their result can be understood as

an existence result of a pure strategy Bayesian equilibrium in a Bayesian game with

uncountable states and state-irrelevant payoffs. Thus, they need to further strengthen

the condition due to the larger size of the state space.

In particular, suppose that each player can only observe his own private signal

from the unit interval [0, 1], which is endowed with the uniform distribution η. Let Ω =

[0, 1]n be the state space. The payoff of each player only depends on the action profile,

but not on the state. Then the deterministic game is reformulated as a Bayesian game

with uncountable states and state-irrelevant payoffs.

The mixed strategy mi of player i in the deterministic game can be realized by

his private signal (like a randomization device) to be a pure strategy fi in the sense
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that mi = η ◦f−1
i . It is easy to check that f = (f1, . . . , fn) is a pure strategy Bayesian

equilibrium in this Bayesian game.

If we view a deterministic discontinuous game as such a Bayesian game, then

Fi = {∅, [0, 1]} for each i ∈ I since players’ payoffs do not depend on the states.

Thus, our Assumption 1 holds trivially, and our result goes beyond Monteiro and

Page (2007) by allowing for the payoffs to be state-dependent.

Remark 25. If one views a deterministic game as a Bayesian game with uncountable

states and let fi and gi be pure strategies and state irrelevant in Definition 9, then

this condition reduces to the uniform payoff security in the sense of Monteiro and

Page (2007). In Theorem 10, we adopt the uniform payoff security condition in the

sense of Carbonell-Nicolau and McLean (2015) since our payoffs are state dependent,

and thus the best response of each player is typically state dependent. Therefore, one

needs to compare the state dependent strategies for each player; for more discussions,

see Carbonell-Nicolau and McLean (2015).

2.2 Discontinuous Games with Incomplete Information and Ambiguity

2.2.1 Existence of Equilibrium under Ambiguity

The framework is the same as specified in the previous section.

2.2.1.1 General case under ambiguity

In the following, we shall consider discontinuous games with incomplete in-

formation and ambiguity. Suppose that players could have multiple priors and are

ambiguous. We follow the non-expected utility approach by adopting the notion of
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maximin preferences of Gilboa and Schmeidler (1989).

For each player i, let Mi be the set of his possible priors such that for any

priors πi, π
′
i ∈ Mi, πi(E) = π′i(E) for any E ∈ Fi. That is, priors must be consistent

with each other on player i’s private information partition. Without loss of generality,

we assume that πi(E) > 0 for any E ∈ Fi and πi ∈Mi.

Given a strategy profile f ∈ L, the maximin expected utility (MEU) of

player i is

Vi(f) = inf
πi∈Mi

∑
ω∈Ω

ui(f(ω), ω)πi(ω).

The ex ante game is denoted by G0 = (Vi,Li)i∈I .

Definition 11. 1. When players have maximin preferences, a strategy profile f ∈

L is said to be an equilibrium if it is a Nash equilibrium in the game G0.

2. Suppose that Mi is a singleton set, and player i is restricted to choose fi which

is measurable with respect to Fi for each i. Then f is said to be a Bayesian

equilibrium if it is a Nash equilibrium in the ex ante game.

Remark 26. If Mi is a singleton set for each agent i, then the maximin expected

utility above reduces to the standard Bayesian expected utility. If Mi is the set of all

probability measures on F which agree with each other on Fi, then it is the maximin

expected utility considered in de Castro and Yannelis (2009).

In games with maximin preferences, priors must be consistent on the informa-

tion partition of each player. The information asymmetry is captured by the MEU,

and hence it is natural to relax the restriction of private information measurability.
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On the contrary, the information asymmetry in a Bayesian model is captured by the

assumption of private information measurability of the strategy set of each player;

that is, each fi is assumed to be private information measurable. If the private in-

formation measurability condition is relaxed in the Bayesian setup, then the game is

reduced to be symmetric information.

It is demonstrated via counterexamples in the previous section that a Bayesian

equilibrium may not exist in a discontinuous game with Bayesian preferences. They

resolved this issue by proposing the “finite payoff security” condition. The following

result shows that if we adopt the maximin preferences, then the existence of equilibria

in the ex ante game follows immediately from the conditions that could guarantee

the existence of Nash equilibria in ex post games.

Proposition 5. If an asymmetric information game G is compact and quasiconcave,

every ex post game Gω is better payoff secure, and players are maximin preference

maximizes, then there exists an equilibrium in the ex ante game G0.

Proof. Since the ex post game Gω is compact, quasiconcave and better-reply secure,

there exists a Nash equilibrium f(ω) in Gω. We claim that f is an equilibrium in the

ex ante game G0.

Suppose otherwise. Then there exists some player i and strategy gi such that

Vi(f) < Vi(gi, f−i). There exists a prior πi ∈Mi such that

∑
ω∈Ω

ui(f(ω), ω)πi(ω) < inf
π′i∈Mi

∑
ω∈Ω

ui(gi(ω), f−i(ω), ω)π′i(ω)

≤
∑
ω∈Ω

ui(gi(ω), f−i(ω), ω)πi(ω),
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which implies that there exists a state ω1 ∈ E such that πi(ω1) > 0 and

ui(f(ω1), ω1) < ui(gi(ω1), f−i(ω1), ω1).

This is a contradiction. Therefore, f is an equilibrium of G0.

Remark 27. We would like to emphasize that in the setting where players adopt

the Bayesian preferences and each ex post game is compact, quasiconcave and better

payoff secure, even if we do not require the private information measurability for

any player’s strategy, Reny (1999)’s theorem is still not applicable to conclude the

existence of an equilibrium in the ex ante game. Indeed, the condition that every ex

post game is quasiconcave is not sufficient to guarantee the quasiconcavity of the ex

ante game.

2.2.2 Timing Games with Asymmetric Information

We study a class of two-person, non-zero-sum, noisy timing games with asym-

metric information. Such games can be used to model behavior in duels as well as in

R&D and patent races.

Let G be an asymmetric information timing game. The state space is Ω. For

player i, the information partition is denoted as Fi and the private prior πi is defined

on Fi. The action space for both players is [0, 1]. At state ω, the payoff of player i is
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given by

ui(ai, a−i, ω) =



pi(xi, ω), if xi < x−i

qi(xi, ω), if xi = x−i

hi(x−i, ω), otherwise

.

Suppose that the following conditions hold for i = 1, 2, ω ∈ Ω and x ∈ [0, 1],

1. pi(·, ω) and hi(·, ω) are both continuous and pi(·, ω) is nondecreasing,

2. qi(x, ω) ∈ co{pi(x, ω), hi(x, ω)},8

3. if qi(x, ω) + q−i(x, ω) < pi(x, ω) + h−i(x, ω), then sgn(pi(x, ω) − qi(x, ω)) =

sgn(q−i(x, ω)− h−i(x, ω)).9

As shown in Reny (1999), each ex post game is compact, quasiconcave and payoff

secure. We claim that each ex post game is reciprocal upper semicontinuous. If

qi(x, ω)+ q−i(x, ω) ≤ pi(x, ω)+h−i(x, ω), then we have that sgn(pi(x, ω)− qi(x, ω)) =

sgn(q−i(x, ω)−h−i(x, ω)). This case has already been shown in Reny (1999), we only

need to consider the case that qi(x, ω)+q−i(x, ω) > pi(x, ω)+h−i(x, ω). The reciprocal

upper semicontinuity in the latter case is obvious since there must be some i ∈ {1, 2}

such that qi(x, ω) > pi(x, ω) or qi(x, ω) > hi(x, ω). Therefore, if the conditions

above hold and players are maximin preference maximizers, then this asymmetric

information timing game has an ex ante equilibrium due to Proposition 5.

The following example shows that an asymmetric information timing game

8The notation co(A) denotes the convex hull of the set A.

9Notice that this condition is slightly weaker than the corresponding condition in Exam-
ple 3.1 of Reny (1999). Example 7 satisfies our condition, but does not satisfy the condition
of Reny (1999).
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may not possess an equilibrium if players have Bayesian preferences. However, this

example has an equilibrium when all players have maximin preferences.

Example 7 (Nonexistence of Bayesian equilibria).

The state space is Ω = {ω1, ω2, ω3, ω4}, where

ω1 = (
1

2
,
1

2
), ω2 = (

1

2
, 1), ω3 = (1, 1), ω4 = (1,

1

2
).

The information partitions are

F1 = {{ω1, ω2}, {ω3, ω4}}, F2 = {{ω1, ω4}, {ω2, ω3}}.

The ex post utility functions of players at state ω = (t1, t2) are given as in the general

model, where pi(x, ω) = x− ti, hi(x, ω) ≡ 0 and

qi(x, ω) =



x− ti, if ti < t−i;

x−ti
2
, if ti = t−i;

0, if ti > t−i.

Players 1 and 2 hold the common prior

π(ω1) = π(ω2) = π(ω3) =
1

3
, π(ω4) = 0.

It is easy to see that this game satisfies all the specified conditions, and hence

by Proposition 5, it possesses an equilibrium when both players are maximin preference

maximizers. We claim that there is no Bayesian equilibrium in this game. By way of

contradiction, suppose that (x1, x2) is a Bayesian equilibrium.

We shall first show that xi(ω) ≥ ti at state ω = (t1, t2) for i = 1, 2. It is clear

that x1(ω), x2(ω) ≥ 1
2

for any ω ∈ Ω, hence we only need to show x1(ω3) = x1(ω4) = 1
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and x2(ω2) = x2(ω3) = 1. Suppose that x1(ω3) = x1(ω4) < 1. If x2(ω3) < x1(ω3),

then player 2 gets a negative payoff at the event {ω2, ω3}, and he can choose x2(ω2) =

x2(ω3) = 1 to be strictly better off. If x2(ω3) ≥ x1(ω3), then player 1 gets a negative

payoff at the event {ω3, ω4}, and he can choose x1(ω3) = x1(ω4) = 1 to be strictly better

off. Thus, x1(ω3) = x1(ω4) = 1. Similarly, we can check that x2(ω2) = x2(ω3) = 1,

as player 2 will otherwise get a negative payoff at the event {ω2, ω3}.

Now we consider the choice of player 2 at state ω1.

1. If x2(ω1) = 1
2
, then the best response of player 1 at the event {ω1, ω2} is to

choose the strategy x1(ω1) = x1(ω2) = 1. However, in this case, there is no best

response for player 2 at the state ω1.

2. If x2(ω1) = 1, then there is no best response for player 1 at the event {ω1, ω2}.

3. Suppose that x2(ω1) = a ∈ (1
2
, 1). If x1(ω1) = x1(ω2) ∈ [1

2
, a), then player 1

can always slightly increase his strategy to be strictly better off. If x1(ω1) =

x1(ω2) = a, then player 1 can always slightly decrease his strategy to be strictly

better off. If x1(ω1) = x1(ω2) ∈ (a, 1], then the best response of player 1 must

be x1(ω1) = x1(ω2) = 1, which implies that there is no best response for player

2 as shown in point (1).

Therefore, there is no Bayesian equilibrium.
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2.3 Behavioral Strategy Bayesian Equilibria in Discontinuous Games

with Incomplete Information

2.3.1 Model

2.3.1.1 Bayesian game and behavioral-strategy equilibrium

We consider a Bayesian game as follows:

G = {ui, Xi, (Ti, Ti), λ}i∈I .

• There is a finite set of players, I = {1, 2, . . . , n}.

• Player i’s action space Xi is a nonempty compact metric space, which is

endowed with the Borel σ-algebra B(Xi). Denote X =
∏

i∈I Xi and B(X) =

⊗i∈IB(Xi); that is, B(X) is the product Borel σ-algebra.

• The measurable space (Ti, Ti) represents the private information space of

player i. Let T =
∏

i∈I Ti and T = ⊗i∈ITi.

• The common prior λ is a probability measure on the measurable space (T, T ).

• For every player i ∈ I, ui : X × T → R+ is a B(X) ⊗ T -measurable function

representing the payoff of player i, which is bounded by some γ > 0.10

As usual, we write t−i for an information profile of all players other than i,

and T−i as the space of all such information profiles. We adopt similar notation for

action profiles, strategy profiles and payoff profiles.

For every player i ∈ I, a pure strategy is a Ti-measurable function from Ti to

Xi. Let Li be the set of all possible pure strategies of player i, and L =
∏

i∈I Li.

10Since ui is bounded, we can assume that ui takes values in R+ without loss of generality.
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A behavioral strategy of player i is a Ti-measurable function from Ti to

4(Xi), where 4(Xi) denotes the space of all Borel probability measures on Xi under

the topology of weak convergence.11 A pure strategy can be viewed as a special case

of a behavioral strategy by considering it as a Dirac measure for every ti. The set

of all behavioral strategies of player i is denoted by Mi, and M =
∏

i∈IMi.

Given a behavioral strategy profile f = (f1, f2, . . . , fn) ∈ M, the expected

payoff of player i is

Ui(f) =

∫
T

∫
X1

. . .

∫
Xn

ui(x1, . . . , xn, t1, . . . , tn)fn(dxn|tn) . . . f1(dx1|t1)λ(dt).

Definition 12. A behavioral-strategy equilibrium is a behavioral strategy profile

f ∗ = (f ∗1 , f
∗
2 , . . . , f

∗
n) ∈ M such that f ∗i maximizes Ui(fi, f

∗
−i) for any fi ∈ Mi and

each player i ∈ I.12

We impose the following assumption on the information structure. Let λi be

the marginal probability of λ on (Ti, Ti) for each i ∈ I. Suppose that (T, T , λ) and

(Ti, Ti, λi) are complete probability measure spaces.

Assumption 2 (Absolue Continuity (AC)). The probability measure λ is absolutely

11That is, a behavioral strategy fi is a transition probability from (Ti, Ti) to (Xi,B(Xi))
such that fi(·|ti) is a probability measure on (Xi,B(Xi)) for all ti ∈ Ti, and fi(B|·) is a
Ti-measurable function for every B ∈ B(Xi). If λi is a probability measure on (Ti, Ti), then
λi �fi denotes a probability measure on Ti×Xi such that λi �fi(A×B) =

∫
A fi(B|ti)λi(dti)

for any measurable subsets A ⊆ Ti and B ⊆ Xi.

12Milgrom and Weber (1985) considered distributional strategies and Balder (1988) ex-
tended their results to behavioral strategies. As remarked in Milgrom and Weber (1985),
every behavioral strategy gives rise to a natural distributional strategy, and every distri-
butional strategy corresponds to an equivalent class of behavioral strategies defined as the
induced regular conditional probabilities. We consider behavioral strategies for simplicity,
but all the results can be easily extended to distributional strategies.
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continuous with respect to ⊗i∈Iλi with the corresponding Radon-Nikodym derivative

ψ : T → R+.

This assumption is widely adopted in the setting of Bayesian games; see, for

example, Milgrom and Weber (1985), Balder (1988), Jackson et al. (2002), Loeb

and Sun (2006) and Carbonell-Nicolau and McLean (2015). Notice that the (AC)

assumption is imposed even when the payoff function is continuous in the action

variables. If players have independent priors in the sense that λ = ⊗i∈Iλi, then the

(AC) assumption holds trivially.

2.3.1.2 Normal form game

Below, we convert a Bayesian game G to an (ex ante) normal form game

G0. If one can show the existence of a Nash equilibrium in the game G0, then this

equilibrium corresponds to a behavioral-strategy equilibrium in the original Bayesian

game G.

A normal form game Gd is a collection (Xi, ui)i∈I , where Xi and ui are the

action space and payoff function of player i, respectively. We view a Bayesian game

G as a normal norm game and denote it by G0 = (Mi, Ui)i∈I , whereMi is the set of

all possible behavioral strategies, and Ui is the expected payoff function of player i.

A Nash equilibrium in the gameG0 is a strategy profile f ∗ = (f ∗1 , f
∗
2 , . . . , f

∗
n) ∈

M such that f ∗i maximizes Ui(fi, f
∗
−i) for any fi ∈ Mi and each player i ∈ I. Thus,

if f ∗ is a Nash equilibrium in the game G0, then it is also a behavioral-strategy

equilibrium in the original Bayesian game G.
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2.3.1.3 Main result

To prove that the mixed extension of a normal form game is payoff secure, Alli-

son and Lepore (2014) introduced the interesting notion of “disjoint payoff matching”

in games with complete information. Below, we extend this notion to the setting of

Bayesian games, and show that the ex ante game G0 is payoff secure.

Consider the points at which a player’s payoff function is discontinuous in

other players’ strategies. In particular, let Di : Ti ×Xi → T−i ×X−i be defined by

Di(ti, xi) = {(t−i, x−i) ∈ T−i ×X−i : ui(xi, ·, ti, t−i) is discontinuous in x−i}.

Suppose that Di has a B(X) ⊗ T -measurable graph for each i ∈ I. Given a pure

strategy fi of player i, denote Dfi
i (ti) = Di(ti, fi(ti)).

Remark 28. In many applications such as auctions and price competition, the dis-

continuity arises due to the action variables, and independently of the state vari-

ables. That is, the correspondence Di does not depend on T in the sense that if

(t, x) ∈ Gr(Di), then (t′, x) ∈ Gr(Di) for any t′ ∈ T . It is usually easy to check that

Di has a measurable graph in such cases.13

Definition 13. A Bayesian game G is said to satisfy the condition of “random

disjoint payoff matching” if for any fi ∈ Li, there exists a sequence of deviations

{gki }∞k=1 ⊆ Li such that the following conditions hold:

13If A is a correspondence from a space Y to Z, then Gr(A) ⊆ Y × Z denotes the graph
of A.
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1. for λ-almost all t = (ti, t−i) ∈ T and all x−i ∈ X−i,

lim inf
k→∞

ui(g
k
i (ti), x−i, ti, t−i) ≥ ui(fi(ti), x−i, ti, t−i);

2. lim supk→∞Di(ti, g
k
i (ti)) = ∅ for any i ∈ I and λi-almost all ti ∈ Ti.14

When Ti is a singletons set for each player i ∈ I, the above definition reduces

to be the notion of disjoint payoff matching introduced by Allison and Lepore (2014)

in a complete information environment.

The following theorem shows that the random disjoint payoff matching con-

dition of a Bayesian game G could guarantee the payoff security of the game G0. Its

proof is provided in Section 2.3.2.

Theorem 11. Under Assumption (AC), if a Bayesian game G satisfies the random

disjoint payoff matching condition, then the game G0 is payoff secure.

2.3.1.4 Existence of behavioral-strategy equilibria

Theorem 11 above shows that the random disjoint payoff matching condition of

a Bayesian game G guarantees the payoff security of the ex ante gameG0. Reny (1999)

showed that a payoff secure game has a pure-strategy Nash equilibrium provided that

the game has compact action spaces, and each player’s payoff function is quasiconcave

in his own actions and satisfies some upper semicontinuity condition.

In the following theorem, we prove the existence of behavioral-strategy equi-

libria in Bayesian games based on Theorem 11.

14For a sequence of sets {Ak}, lim supk→∞Ak = ∩∞k=1 ∪∞j=k Aj and lim infk→∞Ak =
∪∞k=1 ∩∞j=k Aj .
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Theorem 12. Suppose that a Bayesian game G satisfies the random disjoint payoff

matching condition and Assumption (AC). Furthermore, suppose that the mapping∑
i∈I ui(·, t) : X → R is upper semicontinuous for each t ∈ T . Then the game G0 has

a Nash equilibrium, which is a behavioral-strategy equilibrium for the Bayesian game

G.

Proof. By Theorem 11, the game G0 is payoff secure. Then applying Lemma 3 in

Carbonell-Nicolau and McLean (2015), the mapping

f ∈M→
∑
i∈I

Ui(f)

is upper semicontinuous. By Proposition 3.2 and Theorem 3.1 in Reny (1999), the

game G0 has a Nash equilibrium, which implies that G has a behavioral-strategy

equilibrium.

Remark 29. By extending the uniform payoff security condition of Monteiro and

Page (2007) and adopting the (AC) assumption, Carbonell-Nicolau and McLean (2015)

proved the existence of behavioral/distributional-strategy equilibria in Bayesian games

with discontinuous payoffs. In particular, they showed that the ex ante game G0 is

payoff secure when the Bayesian game G satisfies their uniform payoff security con-

dition. Our result does not cover the result of Carbonell-Nicolau and McLean (2015)

and vice versa. Notice that our condition only needs to check the payoffs at each

strategy profile itself, but not for those payoffs in the neighborhood of the strategy

profile.

Remark 30. By adopting the “relative diffuseness” condition of He and Sun (2014)
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and the “uniform payoff security” condition of Carbonell-Nicolau and McLean (2015),

He and Yannelis (2015b) presented a purification result for behavioral-strategy equi-

librium in Bayesian games with discontinuous payoffs. It is straightforward to check

that one can also obtain the existence of pure-strategy equilibria here via a similar

purification result based on the “relative diffuseness” condition and Theorem 12.

2.3.2 Proof of Theorem 11

2.3.2.1 Preparatory results

The proof of Theorem 11 is based on a clever argument of Allison and Lepore

(2014). However, our incomplete information framework introduces several subtle

difficulties and necessitates new arguments that are far from trivial. Below, we present

some technical results needed for the proof of Theorem 11.

We first consider the topology on the space Mi for each i ∈ I. Let Hi be the

space of uniformly finite transition measures from (Ti, Ti, λi) to (Xi,B(Xi)).

Definition 14. The weak topology on Hi is the weakest topology with respect to which

the functional

ν →
∫
Ti

∫
Xi

c(ti, xi)ν(dxi|ti)λi(dti)

is continuous on Hi for every integrably bounded Carathéodory function c.15

The set Mi can be viewed as a subspace of Hi endowed with its relative

15The function c is said to be a Carathéodory function if c(·, xi) is Ti-measurable for each
xi ∈ Xi and c(ti, ·) is continuous on Xi for each ti ∈ Ti. In addition, c is called integrably
bounded if there exists a λi-integrable function χ : Ti → R+ such that |c(ti, xi)| ≤ χ(ti) for
all (ti, xi) ∈ Ti ×Xi.
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topology. The Cartesian product M = Πi∈IMi is endowed with the usual product

topology.

The following lemma shows that each player i in the game G0 has a nonempty,

convex and weakly compact strategy space Mi.

Lemma 3. Mi is a nonempty, convex and weakly compact subset of the topological

vector space Hi.

Proof. It is obvious thatMi is nonempty and convex. The weak compactness ofMi

is from Theorem 2.3 of Balder (1988).

Lemma 4. If Mi is viewed as a subspace of Hi endowed with its relative topology,

then the functional

ν →
∫
Ti

∫
Xi

c(ti, xi)ν(dxi|ti)λi(dti)

is lower semicontinuous for every function c : Ti ×Xi → (−∞,+∞] such that

1. c(ti, ·) is lower semicontinuous on Xi for every ti ∈ Ti;

2. c is Ti ⊗ B(Xi)-measurable;

3. c is integrably bounded from below in the sense that there exists some integrable

function h : Ti → R such that c(ti, xi) ≥ h(ti) for all ti ∈ Ti and xi ∈ Xi.

Proof. Lemma 4 is from Theorem 2.2 (a) in Balder (1988).

For any nonempty subset J ⊆ I, let M̃J be the space of transition probabilities

from (
∏

j∈J Tj,⊗j∈JTj,⊗j∈Jλj) to
∏

j∈J Xj, and H̃J the space of uniformly finite

transition measures from (
∏

j∈J Tj,⊗j∈JTj,⊗j∈Jλj) to
∏

j∈J Xj. Suppose that H̃J is



www.manaraa.com

84

endowed with the weak topology as defined in Definition 14, and M̃J is viewed as a

subset of H̃J endowed with the relative topology.

Lemma 5. The mapping (fj)j∈J → ⊗j∈Jfj from
∏

j∈JMj to M̃J is continuous.

Proof. Theorem 2.5 in Balder (1988) considers the case that J has two elements. It

is obvious that his argument still holds for any finite set J .

In the proof of our Theorem 11, we need to deal with some subtle measurability

issues based on the projection theorem and Aumann’s measurable selection theorem.

These theorems are stated below for the convenience of the reader.

Projection Theorem: Let X be a Polish space and (S,S, µ) a complete

finite measure space. If a set E belongs to S ⊗ B(X), then the projection of E on S

belongs to S.

Aumann’s measurable selection theorem: Let X be a Polish space and

(S,S, µ) a complete finite measure space. Suppose that F is a nonempty valued

correspondence from S to X having an S ⊗B(X)-measurable graph. Then F admits

a measurable selection; that is, there is a measurable function f from S to X such

that f(s) ∈ F (s) for µ-almost all s ∈ S.

2.3.2.2 Proof

We now proceed with the proof of Theorem 11.

Fix a behavioral strategy profile (f1, . . . , fn) ∈M, a player i ∈ I and ε > 0.
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Let Si : Ti → Xi be a correspondence defined by

Si(ti) = {xi ∈ Xi :

∫
T−i

∫
X−i

ui(xi, x−i, ti, t−i)ψ(ti, t−i)f−i(dx−i|t−i)⊗j 6=i λi(dt−i)

≥
∫
T−i

∫
X

ui(xi, x−i, ti, t−i)ψ(ti, t−i)f(dx|ti, t−i)⊗j 6=i λi(dt−i)}.

It is obvious that for each fixed ti, Si(ti) is nonempty. Since ui is jointly measurable,

and f and ψ are measurable, the correspondence Si has a B(Xi)⊗Ti-measurable graph.

By the Aumann’s measurable selection theorem, Si has a Ti-measurable selection f ′i .

Therefore, we have that∫
T

∫
X−i

ui(f
′
i(ti), x−i, ti, t−i)f−i(dx−i|t−i)λ(dt) ≥

∫
T

∫
X

ui(xi, x−i, ti, t−i)f(dx|t)λ(dt).

By the random disjoint payoff matching condition, there exists a sequence of

pure strategies {gki } ⊆ Li such that for λ-almost all t = (ti, t−i) ∈ T and all x−i ∈ X−i,

lim inf
k→∞

ui(g
k
i (ti), x−i, ti, t−i) ≥ ui(f

′
i(ti), x−i, ti, t−i),

and lim supk→∞Di(ti, g
k
i (ti)) = ∅ for any i ∈ I and λi-almost all ti ∈ Ti.

Let

Ek
i (ti) = {(t−i, x−i) : ui(g

k
i (ti), x−i, ti, t−i) > ui(f

′
i(ti), x−i, ti, t−i)− ε}.

Since the functions ui, g
k
i and f ′i are all measurable, the correspondence Ek

i has a

B(X−i)⊗ T -measurable graph. For λ-almost all t ∈ T and all x−i ∈ X−i, since

lim inf
k→∞

ui(g
k
i (ti), x−i, ti, t−i) ≥ ui(f

′
i(ti), x−i, ti, t−i),

we have (t, x−i) ∈ lim infk→∞Gr(Ek
i ). As a result,

λ � f−i
(

lim inf
k→∞

Gr(Ek
i )
)

= 1,
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which implies that

lim inf
k→∞

λ � f−i
(
Gr(Ek

i )
)
≥ λ � f−i

(
lim inf
k→∞

Gr(Ek
i )
)

= 1.

Thus, limk→∞ λ � f−i
(
Gr(Ek

i )
)

= 1.

Notice that the ti-section of the set lim supk→∞Gr(D
gki
i ) is lim supk→∞Di(ti, g

k
i (ti)),

which is the empty set for λi-almost all ti ∈ Ti. Thus, λ�f−i
(

lim supk→∞Gr(D
gki
i )
)

=

0, and

lim sup
k→∞

λ � f−i
(

Gr(D
gki
i )
)
≤ λ � f−i

(
lim sup
k→∞

Gr(D
gki
i )

)
= 0.

As a result, limk→∞ λ � f−i
(

Gr(D
gki
i )
)

= 0.

Therefore, limk→∞ λ�f−i
(

Gr(Ek
i ) \Gr(D

gki
i )
)

= 1. There exists some positive

integer K > 0 such that for any k ≥ K,

λ � f−i
(

Gr(Ek
i ) \Gr(D

gki
i )
)
> 1− ε.

Let gi = gKi and F = Gr(EK
i ) \Gr(D

gKi
i ). Then we have

∫
F

ui(gi(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))

≥
∫
F

ui(f
′
i(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))− ε,
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which implies that16

∫
T×X−i

ui(gi(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))

=

∫
F

ui(gi(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))

+

∫
F c

ui(gi(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))

≥
∫
F

ui(f
′
i(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))− ε

+

∫
F c

ui(f
′
i(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))− γ · ε

=

∫
T×X−i

ui(f
′
i(ti), x−i, ti, t−i)λ � f−i(d(ti, t−i, x−i))− (γ + 1)ε.

Since X−i is a compact metric space, it is second countable (see Royden

and Fitzpatrick (2010, Proposition 25, p.204)). Thus, we can find a countable base

{Vm}m≥1 for X−i. Let

hmi (x−i, t) =


infx′−i∈Vm ui(gi(ti), x

′
−i, ti, t−i), if x−i ∈ Vm,

−2γ, otherwise.

It is easy to see that hmi (·, t) is lower semicontinuous on X−i for each fixed t ∈ T and

m ≥ 1. It can be easily checked that hmi is a jointly measurable function. Indeed, it

suffices to show that for any c ≥ 0, the set {(x−i, t) ∈ X−i × T : hmi (x−i, t) < c} is

B(X−i) ⊗ T -measurable. Since ui is jointly measurable and gi is Ti-measurable, the

set

{(x−i, t) ∈ Vm × T : ui(gi(ti), x−i, ti, t−i) < c}

16For any subset E, Ec denotes the complement of the set E.
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is B(X−i)⊗ T -measurable. By the Projection Theorem, the projection of the above

set on T , denoted as Tm, is a T -measurable subset. Notice that

{(x−i, t) ∈ X−i × T : hmi (x−i, t) < c} = (Vm × Tm) ∪ (V c
m × T ),

which is B(X−i)⊗ T -measurable. Thus, hmi is a jointly measurable function.

Let ui(x−i, t) = supm≥1 h
m
i (x−i, t). For each fixed t ∈ T , as in the proof of

Reny (1999, Theorem 3.1), ui(·, t) is the pointwise supremum of a sequence of lower

semicontinuous function, which is also lower semicontinuous on X−i. In addition,

ui is the supremum of a sequence of B(X−i) ⊗ T -measurable functions, which is

also B(X−i) ⊗ T -measurable. Define a function H l
i :
∏

j 6=iMj → R as follows: for

g−i = (g1, . . . , gi−1, gi+1, . . . , gn) ∈
∏

j 6=iMj,

H l
i(g−i) =

∫
T

∫
X−i

ui(x−i, t)ψ(t)⊗j 6=i gj(dxj|tj)⊗i∈I λi(dt).

Let φ(x−i, t−i) =
∫
Ti
ui(x−i, t)ψ(t)λi(dti). Since ui(x−i, t)ψ(t) is lower semicon-

tinuous in x−i, jointly measurable and integrably bounded, φ is also lower semicontin-

uous in x−i, jointly measurable and integrably bounded. By Lemma 5, the functional

g−i = (g1, . . . , gi−1, gi+1, . . . , gn)→ ⊗j 6=igj from
∏

jMj 6=i to M̃−i is continuous. Then

by Lemma 4, the functional

ν →
∫
T−i

∫
X−i

φ(x−i, t−i)ν(dx−i|t−i)λ−i(dt−i)

is lower semicontinuous on M̃−i. Since H l
i is the composition of these two functionals,

it is lower semicontinuous. As a result, there is an open neighborhood N−i(f−i) ⊆
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∏
j 6=iMj of f−i such that for any g−i ∈ N−i(f−i),

∫
T

∫
X−i

ui(x−i, t)ψ(t)g−i(dx−i|t−i)⊗i∈I λi(dt)

≥
∫
T

∫
X−i

ui(x−i, t)ψ(t)f−i(dx−i|t−i)⊗i∈I λi(dt)− ε.

That is,

∫
T

∫
X−i

ui(x−i, t)g−i(dx−i|t−i)λ(dt)

≥
∫
T

∫
X−i

ui(x−i, t)f−i(dx−i|t−i)λ(dt)− ε.

Recall that F = Gr(EK
i ) \ Gr(D

gKi
i ). Since ui(t, gi(ti), ·) is continuous on the

t-section {x−i ∈ X−i : (x−i, t) ∈ F} of F , we have ui(x−i, t) = ui(gi(ti), x−i, t) for any

(x−i, t) ∈ F . As a result,

∫
T

∫
X−i

ui(x−i, t)f−i(dx−i|t−i)λ(dt)

=

∫
F

ui(x−i, t)λ � f−i(d(t, x−i)) +

∫
F c

ui(x−i, t)λ � f−i(d(t, x−i))

≥
∫
F

ui(gi(ti), x−i, t)λ � f−i(d(t, x−i))

>

∫
F

ui(gi(ti), x−i, t)λ � f−i(d(t, x−i)) +

∫
F c

ui(gi(ti), x−i, t)λ � f−i(d(t, x−i))− γ · ε

=

∫
T

∫
X−i

ui(gi(ti), x−i, t)f−i(dx−i|t−i)λ(dt)− γ · ε.
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Therefore, for any g−i ∈ N−i(f−i), we have

∫
T

∫
X−i

ui(gi(ti), x−i, t)g−i(dx−i|t−i)λ(dt)

≥
∫
T

∫
X−i

ui(x−i, t)g−i(dx−i|t−i)λ(dt)

≥
∫
T

∫
X−i

ui(x−i, t)f−i(dx−i|t−i)λ(dt)− ε

≥
∫
T

∫
X−i

ui(gi(ti), x−i, t)f−i(dx−i|t−i)λ(dt)− (γ + 1) · ε

≥
∫
T

∫
X−i

ui(f
′
i(ti), x−i, t)f−i(dx−i|t−i)λ(dt)− 2(γ + 1) · ε

≥
∫
T

∫
X

ui(xi, x−i, t)f(dx|t)λ(dt)− 2(γ + 1) · ε,

and consequently, the game G0 is payoff secure.

2.3.3 An Application

Below, we provide an example of an all-pay auction with general tie-breaking

rules to demonstrate the usefulness of our result.17

Suppose that N bidders compete for an object. Each bidder’s valuation of the

object is given by a measurable function v : Πi∈ITi → [0, 1], where Ti is the state space,

i = 1, . . . , N . The common prior is λ, and λ is absolutely continuous with respect to

⊗i∈Iλi. Bidder i observes his own state ti and submits a bid xi ∈ Xi = [0, 1]. The

17Jackson et al. (2002) showed the existence of a distributional-strategy equilibrium for
discontinuous games with incomplete information by proposing a solution concept where
the payoff is “endogenously defined” at the discontinuities; see also Araujo and De Castro
(2009). Araujo, De Castro and Moreira (2008) first considered non-monotonic functions in
auctions and showed that an all-pay auction tie-breaking rule is sufficient for the existence
of pure-strategy equilibrium for a class of auctions. Carbonell-Nicolau and McLean (2015)
considered an all-pay auction with the standard tie-breaking rule that the winning players
share the object with equal probability. The results of this section are not covered by any
of the above papers.
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bidder who submits the highest bid wins the object and all bidders need to pay their

bids. If multiple bidders submit the highest bid simultaneously, then the tie is broken

as follows:

ui(x1, . . . , xN , t1, . . . , tN) =
−xi, xi < maxj∈I xj,

ξi(x1,...,xN )∑
k∈I:xk=maxj∈I xj

ξk(x1,...,xN )
· v(t1, . . . , tN)− xi, xi = maxj∈I xj;

where ξ = (ξ1, . . . , ξN) : [0, 1]N → (0, 1]N is a continuous function which assesses the

relative importance of each bidder’s position when breaking the tie. In particular, if

ξi ≡ 1 for any i, then the tie is broken via the equal probability rule. However, this

is not necessary.

Proposition 6. An all-pay auction with general tie-breaking rules satisfies the ran-

dom disjoint payoff matching condition.

Proof. Given any bidder i and fi ∈ Li, let

gki (ti) =


min{fi(ti) + 1

k
, 1}, fi(ti) < 1,

1
k
, fi(ti) = 1.

It is obvious that gki ∈ Li for any k ≥ 1.

Fix any t ∈ T and x−i ∈ X−i. If fi(ti) = 1, then ui(fi(ti), x−i, ti, t−i) ≤ 0 and

lim infk→∞ ui(g
k
i (ti), x−i, ti, t−i) ≥ 0. If fi(ti) < 1, we need to consider three possible

cases.

1. If bidder i is the unique winner, then he is still the unique winner by adopting the

strategy gki (ti) since gki (ti) > fi(ti). Since gki (ti) → fi(ti) and ξ is a continuous
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function, we have limk→∞ ui(g
k
i (ti), x−i, ti, t−i) = ui(fi(ti), x−i, ti, t−i).

2. If bidder i is one of the multiple winners, then he becomes the unique winner

by adopting the strategy gki (ti). Then

lim
k→∞

ui(g
k
i (ti), x−i, ti, t−i) = vi(ti, t−i)− fi(ti) ≥ ui(fi(ti), x−i, ti, t−i).

3. If bidder i does not get the object, then he still loses the game by adopt-

ing gki (ti) for sufficiently large k. As a result, limk→∞ ui(g
k
i (ti), x−i, ti, t−i) =

ui(fi(ti), x−i, ti, t−i).

Thus, we have

lim inf
k→∞

ui(g
k
i (ti), x−i, ti, t−i) ≥ ui(fi(ti), x−i, ti, t−i),

which implies that condition (1) of Definition 13 is satisfied. In addition, for all

ti ∈ Ti, Di(ti, g
k
i (ti)) =

{
[0, gki (ti)]

N−1 \ [0, gki (ti))
N−1
}
×T−i. Since gki (ti) 6= gk

′
i (ti) for

sufficiently large k and k′, we have

lim sup
k→∞

Di(ti, g
k
i (ti)) = ∅

for any ti ∈ Ti. Thus, condition (2) of Definition 13 also holds.

Therefore, an all-pay auction with general tie-breaking rules satisfies the ran-

dom disjoint payoff matching condition.

Since
∑

i∈I ui(t, x) = v(t) −
∑

i∈I xi,
∑

i∈I ui(t, ·) is upper semicontinuous for

every t. Thus, the existence of a behavioral-strategy equilibrium follows immediately

by combining Theorem 12 and Proposition 6.
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Corollary 9. A behavioral-strategy equilibrium exists in an all-pay auction with gen-

eral tie-breaking rules.

Remark 31. Allison and Lepore (2014) presented a Bertrand-Edgeworth oligopoly

model which has general specifications of costs, residual demand rationing, and tie-

breaking rules. They showed that this price competition problem satisfies the disjoint

payoff matching condition and a mixed-strategy equilibrium exists. One can easily ex-

tend their model to an incomplete information environment and formulate the problem

as a Bayesian game. Then by referring to our Theorems 11 and 12, one can prove the

existence of a behavioral-strategy equilibrium. For further applications on Bayesian

games with discontinuous payoffs including the war of attrition, Cournot competition

and rent seeking, see Carbonell-Nicolau and McLean (2015).
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CHAPTER 3
EQUILIBRIUM THEORY UNDER AMBIGUITY

3.1 Introduction

Modeling the market with uncertainty is of important academic significance

and realistic value in economics as most decision making is made under uncertainty.

Towards this direction, the Arrow-Debreu “state contingent model” allows the state

of nature of the world to be involved in the initial endowments and payoff functions,

which is an enhancement of the deterministic general equilibrium model of Arrow-

Debreu-McKenzie. According to Arrow-Debreu, agents make contacts ex ante (in

period one) before the state of nature is realized and once the state is realized (in

period two) the contract is executed and consumption takes place. The issue of in-

centive compatibility doesn’t arise in this model, as all the information is symmetric.

However, for the state contingent model to make sense one must assume that there

is an exogenous court or government that enforces the contract ex post, otherwise

agents may find it beneficial to renege. Radner (1968, 1982) extended the analysis

of Arrow and Debreu by introducing asymmetric (differential) information. In par-

ticular, each agent is now characterized by his own private information, a random

initial endowment, a random utility function and a prior. The private information

is modeled as a partition of a finite state space and the allocation of each agent is

assumed to be measurable with respect to his own private information. This means

that each agent only knows the atom of his partition including the true state, but
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cannot distinguish those states within the same atom when making decisions. The

Walrasian equilibrium notion in this model is called ‘Walrasian expectations equilib-

rium’, or WEE in short. Along this line, Yannelis (1991) proposed a core concept,

which is called private core.

The Walrasian expectations equilibrium and private core share some interest-

ing properties (in fact, the Walrasian expectations equilibrium is a strict subset of the

private core): without the assumption of free disposal, whenever agents are Bayesian

expected utility maximizers and allocations are private information measurable, the

two above notions are both Bayesian incentive compatible and private information

measurable efficient (see Koutsougeras and Yannelis (1993) and Krasa and Yannelis

(1994)). However, these solution concepts are only efficient in the second best sense;

that is, they are only private information measurable efficient allocations and may

result in a possible welfare loss (recall that from Holmstrom and Myerson (1983), we

know that with the Bayesian expected utility it is not possible to have allocations

which are both first best efficient and also incentive compatible). The existence of

WEE in a free disposal economy can be found in Radner (1968, 1982). However, the

free disposal WEE allocations may be not incentive compatible (see Glycopantis and

Yannelis (2005)). Furthermore, if we require non-free disposal, then a WEE may not

exist (see Einy and Shitovitz (2001)). Therefore, a natural question arises:

Can one find an appropriate framework in the asymmetric information economy

such that the existence of equilibrium and core notions continues to hold and

furthermore, these notions are both incentive compatible and first best efficient?

A crucial assumption in the frameworks of Radner (1968, 1982) and Yannelis
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(1991) is that agents maximize Bayesian expected utilities. Nevertheless, from Ells-

berg (1961) (see also de Castro and Yannelis (2014)), there is a huge literature which

criticizes the Bayesian paradigm and explores the non-expected utility theory. The

maximin expected utility of Gilboa and Schmeidler (1989) is one of the successful

alternatives. Indeed, recently de Castro, Pesce and Yannelis (2011, 2014) and de

Castro and Yannelis (2009) applied the maximin expected utility to an asymmetric

information economy with a finite number of states of nature,1 and introduced var-

ious core and Walrasian equilibrium notions. With the maximin expected utilities,

agents take into account the worst possible state that can occur and choose the best

possible allocations. de Castro, Pesce and Yannelis (2011) proved that the ex ante

equilibrium and core notions based on the maximin expected utility, which are called

maximin expectations equilibrium (MEE) and maximin core (MC) therein, are in-

centive compatible in the economy without free disposal. Moreover, it is noteworthy

that since the allocations are not required to be measurable with respect to agents’

private information, MEE and MC allocations are also first best efficient. Therefore,

the conflict between efficiency and incentive compatibility is solved in this new ap-

proach. More importantly, de Castro and Yannelis (2009) showed that the conflict of

incentive compatibility and first best efficiency is inherent in the standard expected

utility decision making (Bayesian) and it is resolved only when agents maximize the

maximin expected utility (MEU). In particular, they proved that the MEU is a nec-

1MEU is first applied to a general equilibrium model of an asymmetric information econ-
omy by Correia-da-Silva and Hervés-Beloso (2009). They proved the existence of the ex
ante Walrasian equilibrium in an asymmetric information economy with maximin prefer-
ences and a finite state space. However, their setup is different from ours and they do not
consider the issue of incentive compatibility; see also Correia-da-Silva and Hervés-Beloso
(2012, 2014).
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essary condition for efficient allocations to be incentive compatible. The above work

implies the fact that one has to work with MEU if the first best efficiency is desirable.

As a result, a natural question arises:

Can one obtain the classical core-Walras existence and equivalence results for

asymmetric information economies where agents are ambiguous (that is, MEU

maximizers) and also the state space is not necessarily finite?

An affirmative answer to this question is of great importance because not only

this way one develops a new equilibrium theory where there is no conflict between

efficiency and incentive compatibility, but also such positive results could become the

main tool for applications in other fields of economics.

The first aim of this chapter is to prove the existence of the maximin expec-

tations equilibrium and maximin core in a non-free disposal economy with countably

many states of nature.2 Since there is a countable number of states in the economy,

the allocations are infinite dimensional. An advantage of the ambiguous economy

modeling is that it allows us to view an asymmetric information economy as a deter-

ministic economy with infinite dimensional commodity spaces. Thus, we can directly

apply known results in the literature to obtain the existence of maximin expecta-

tions equilibrium.3 As a corollary, we obtain that the consistency between incentive

2For a general equilibrium model with countably many states, see, for example, Hervés-
Beloso, Martins-da-Rocha and Monteiro (2009).

3On the contrary, one can not readily convert an asymmetric information economy with
Bayesian expected utility maximizers to an economy with infinite dimensional commodity
spaces due to the restriction of the private information measurability requirement. For some
papers with infinite dimensional commodity spaces, see, for example, Bewley (1972) and
Podczeck and Yannelis (2008).
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compatibility and efficiency also holds with a countable number of states.

The second aim of this chapter is to prove a core equivalence theorem for an

economy with asymmetric information where agents are ambiguous (that is, maxi-

mize MEU). In a finite agent framework and complete information, Debreu and Scarf

(1963) considered a sequence of replicated economy and showed that the set of non-

blocked allocations in every replicated economy converges to the set of Walrasian

equilibria. In Section 3.4, we follow the Debreu-Scarf approach and establish a simi-

lar equivalence result for an equal treatment economy with asymmetric information,

a countable number of states and MEU preferences. In an atomless economy with

complete information, Schmeidler (1972), Grodal (1972) and Vind (1972) improved

the core-Walras equivalence theorem of Aumann (1964), by showing that if an allo-

cation is not in the core, then it can be blocked by a non-negligible coalition with

any given measure less than 1. Hervés-Beloso, Moreno-Garćıa and Yannelis (2005a,b)

first extended this result to an asymmetric information economy with the equal treat-

ment property and with an infinite dimensional commodity space by appealing to the

finite dimensional Lyapunov’s theorem. Bhowmik and Cao (2012, 2013a) obtained

further extensions based on an infinite dimensional version of Lyapunov’s theorem.

All the above results rely on the Bayesian expected utility formulation and therefore

the conflict of efficiency and incentive compatibility still holds despite the non atomic

measure space of agents.4 Our Theorem 18 is an extension of Vind’s theorem to the

4As the work of Sun and Yannelis (2008) indicates, even with an atomless measure space
of agents we cannot guarantee that WEE allocations are incentive compatible.
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asymmetric information economy with the equal treatment property and a countable

number of states of nature, where agents behave as maximin expected utility max-

imizers. Thus, our new core equivalence theorem for the MEU framework, resolves

the inconsistency of efficiency and incentive compatibility.

Finally, we provide two characterizations for maximin expectations equilib-

rium. In the complete information economy with finite agents, Aubin (1979) intro-

duced a new approach that at a first glance seems to be different from the Debreu-

Scarf; however one can show that they are essentially equivalent. Aubin considered

a veto mechanism in the economy when a coalition is formed; in particular, agents

are allowed to participate with any proportion of their endowments. The core no-

tions defined by the veto mechanism, is called Aubin core and it coincides with the

Walrasian equilibrium allocations. The approach of Aubin has been extended to an

asymmetric information economy to characterize the Walrasian expectations equilib-

rium (see for example Graziano and Meo (2005), Hervés-Beloso, Moreno-Garćıa and

Yannelis (2005b) and Bhowmik and Cao (2013a)). Another approach to characterize

the Walrasian expectations equilibrium is due to Hervés-Beloso, Moreno-Garćıa and

Yannelis (2005a,b). They showed that the Walrasian expectations equilibrium alloca-

tion cannot be privately blocked by the grand coalition in any economy with the initial

endowment redistributed along the direction of the allocation itself. This approach

has been extended to a pure exchange economy with an atomless measure space of

agents and finitely many commodities, and an asymmetric information economy with

an infinite dimensional commodity space (e.g., see Hervés-Beloso and Moreno-Garćıa
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(2008), Bhowmik and Cao (2013a,b)). Our Theorem 14 and 15 extended these two

characterizations to the asymmetric information economy with ambiguous agents and

with countably many states of nature.

This chapter is based on He and Yannelis (2015c), and is organized as follows.

Section 3.2 states the model of ambiguous asymmetric information economies with a

countable number of states and discusses main assumptions. Section 3.3 introduces

the maximin expectations equilibrium and maximin core and proves their existence,

and contains two different characterizations of maximin expectations equilibrium by

using the maximin blocking power of the grand coalition. Section 3.4 extends the

maximin expectations equilibrium and maximin core to an economy with a continuum

of agents, and interprets the asymmetric information economy with finite agents as

a continuum economy with finite types. In addition, two core-Walras equivalence

theorems and an extension of Vind’s result are given for an asymmetric information

economy with a countable number of states. Section 3.5 shows that maximin efficient

allocations are incentive compatible in economies with finite agents and atomless

economies with the equal treatment property. Section 3.6 collects some concluding

remarks and open questions. Section 3.7 contains some proofs.

3.2 Ambiguous Asymmetric Information Economy

We define an exchange economy with uncertainty and asymmetric information.

The uncertainty is represented by a measurable space (Ω,F), where Ω = {ωn}n∈N

is a countable set and F is the power set of Ω. Let Rl
+ be the commodity space, and
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I = {1, 2, · · · , s} the set of agents.

For each i ∈ I, Fi is the σ-algebra on Ω generated by the partition Πi of

agent i, which represents the private information. Let Πi(ω) be the element in the

partition Πi which contains ω. Therefore, if any state ω ∈ Ω is realized, then agent i

can only observe the event Πi(ω). The prior πi of agent i is defined on Fi such that∑
E∈Πi

πi(E) = 1 and πi(E) > 0 for every E ∈ Πi. Notice that πi is incomplete; that

is, the probability of each element in the information partition Πi is well defined, but

not the probability of the event {ω} for every ω ∈ Ω. Let ui(ω, ·) : Rl
+ → R+ be the

positive ex post utility function of agent i at state ω from the consumption space

to the positive real line, and ei : Ω→ Rl
+ be i’s random initial endowment.

Let E be an ambiguous asymmetric information economy, where

E = {(Ω,F); (Fi, ui, ei, πi) : i ∈ I = {1, . . . , s}}.

A price vector p is a nonzero function from Ω to Rl.5 We assume that 4

denotes the set of all price vectors, where

4 = {p ∈ (Rl)∞ : |
∑
ω∈Ω

l∑
j=1

p(ω, j)| = 1},

and p(ω, j) is the price of the commodity j at the state ω.

There are three stages in this economy: at the ex ante stage (t=0), the infor-

mation partition and the economy structure are common knowledge; at the interim

stage (t=1), each individual i learns his private information Πi(ω) which includes the

5The vector p is said to be nonzero if p is not a constant function of value 0, but it is
possible that p(ω) = 0 for some ω.
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true state ω, and makes his consumption plan; at the ex post stage (t=2), agent i

receives the endowment and consumes according to his plan.6

An allocation is a mapping x from I × Ω to Rl
+. For each i ∈ I, let

Li = {xi : xi(ω) ∈ Rl
+ and uniformly bounded for all ω ∈ Ω}

be the set of all random allocations of agent i.7 If xi ∈ Li and p ∈ 4, we denote∑
ω∈Ω p(ω) · xi(ω) as p · xi.

Suppose that x is an allocation. Then xi(ω) is a vector in Rl
+ for each i ∈ I,

which represents the allocation at the state ω. In addition, xi(ω, j) denotes the

allocation of commodity j at the state ω. An allocation x is said to be feasible if∑
i∈I xi =

∑
i∈I ei. That is, for each ω ∈ Ω,

∑
i∈I

xi(ω) =
∑
i∈I

ei(ω).

The feasibility here indicates that the economy has no free disposal.

Assumption 3 (E). 1. For each i ∈ I, ei is Fi-measurable.8

2. There exists some β > 0 such that for any ω ∈ Ω and 1 ≤ j ≤ l, ei(ω, j) ≥ β.

3. There exists some γ > 0 such that for any ω ∈ Ω and 1 ≤ j ≤ l,
∑

i∈I ei(ω, j) ≤

γ.

Assumption (E) is about the endowment. Condition (1) says that each agent’s

endowment should be measurable with respect to his private information, otherwise

6The production sector can be included in the analysis and the results should still hold.
For simplicity of the exposition, we have not included production.

7That is, Li = l∞+ for each i ∈ I.

8Clearly, if ei is independent of ω, then it is Fi-measurable.
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the agent may disclose the true state from his endowment. Condition (2) implies

that for every agent i, ei is an interior point of (Rl
+)∞ under the sup-norm topology.

Condition (3) implies that ei ∈ Li; that is, the resource of the economy is limited no

matter what the state is. This condition will be automatically satisfied if there are

only finitely many states.9

Assumption 4 (U). 1. For each ω ∈ Ω and i ∈ I, ui(ω, ·) is continuous, strictly

increasing and concave.

2. For each i ∈ I and x ∈ Rl
+, ui(·, x) is Fi-measurable.10

3. For any a ∈ Rl
+ and K0 > 0 such that a(j) ≤ K0 for 1 ≤ j ≤ l, there exists some

K > 0 such that 0 ≤ ui(ω, a) ≤ K for any i ∈ I and ω ∈ Ω. Let ui(ω, 0) = 0

for all i ∈ I and ω ∈ Ω.

Assumption (U) is about the utility. Conditions (1) and (2) are standard in

the literature. Condition (3) basically says that agents’ utility cannot be arbitrarily

large with limited goods. This condition can be removed if Ω is finite: for each i ∈ I

and ω ∈ Ω, ui(ω, a) is continuous at a, if a is bounded, then ui(ω, ·) is bounded;

since there are only finitely many states, ui(ω, ·) is uniformly bounded among all ω.

Moreover, the condition ui(ω, 0) = 0 means that agents have no payoff if they have

no consumption.

For every agent i, his private prior may be incomplete and the allocation in

9Since the initial endowment is bounded, the value p · ei of the initial endowment ei is
finite for any agent i and price p.

10If ui is state independent, then it is automatically Fi-measurable.
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Li is not required to be Fi-measurable. Thus, agents cannot evaluate the allocation

based on the Bayesian expected utility. In this chapter, we will consider the maximin

preference axiomatized by Gilboa and Schmeidler (1989).11

LetMi be the set of all probability measures on F which agree with πi on Fi.

That is,

Mi = {µ : F → [0, 1] : µ(E) = πi(E), ∀E ∈ Fi}.

Let Pi be a nonempty and convex subset of Mi, which is the set of priors of agent i.

We assume that agent i is ambiguous on the set Pi and will take the worst

possible scenario when evaluating his payoff. In particular, for any two allocations

xi, yi ∈ Li, agent i prefers the allocation xi to the allocation yi if

inf
µ∈Pi

∑
ω∈Ω

ui(ω, xi(ω))µ(ω) ≥ inf
µ∈Pi

∑
ω∈Ω

ui(ω, yi(ω))µ(ω).

For any allocation {xi}i∈I , the maximin ex ante utility of agent i is:

Vi(xi) = inf
µ∈Pi

∑
ω∈Ω

ui(ω, xi(ω))µ(ω).

The maximin interim utility of agent i with allocation xi at the state ω is

vi (ω, xi) =
1

πi(Πi(ω))
inf
µ∈Pi

∑
ω1∈Πi(ω)

ui(ω1, xi(ω1))µ(ω1).

We will slightly abuse the notations by writing vi (ω, xi) = vi (E, xi) for ω ∈ E ∈ Fi.

Remark 32. If Pi is a singleton set for each agent i, then the maximin expected

utility above reduces to the standard Bayesian expected utility. If Pi = Mi, the set

11We can adopt the more general variational preferences axiomatized by Maccheroni,
Marinacci and Rustichini (2006), and all the results in Sections 3 and 4 will still go through.
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of all probability measures on F which agree with πi on Fi, then it is the maximin

expected utility considered in de Castro and Yannelis (2009). In the latter case, de

Castro and Yannelis (2009) showed that for any two allocations xi, yi ∈ Li, agent i

prefers the allocation xi to the allocation yi if:

∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, xi(ω))]πi(Ei) ≥
∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, yi(ω))]πi(Ei).
12 (3.1)

Remark 33. It should be noted that the asymmetric information in a Bayesian model

comes from the private information measurability of allocations. For example, if allo-

cations are not required to be private information measurable, then the framework of

Radner (1968) reduces to the standard Arrow-Debreu state-contingent model. In other

words, the private information measurability of allocations captures the information

asymmetry in a Bayesian model. Furthermore, despite the fact that the Walrasian ex-

pectations equilibrium is incentive compatible (see Koutsougeras and Yannelis (1993)),

it may be only second best efficient due to the private information measurability re-

quirement of the allocations, which is pointed out in this chapter (see Example 9 below)

as well as de Castro and Yannelis (2009).

In an ambiguity model, the information asymmetry is captured by the maximin

expected utility itself. In particular, priors are defined on the information partition of

each agent (while they are defined on the whole state space Ω in a Bayesian model).

Thus, it is natural to relax the restriction of private information measurability of

12First, we use ‘inf’ in these two inequalities instead of ‘min’ used in de Castro and
Yannelis (2009), since there are infinite states here. The existence of infimum is guaranteed
since the ex post utility function is nonnegative. Thus the ex ante utility Vi is well defined.
Second, although de Castro and Yannelis (2009) only argued that these two inequalities are
equivalent when there are finitely many states, this observation is still true in our context.
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allocations in an ambiguity model. In addition, we show that the maximin expectations

equilibrium is both first best efficient and incentive compatible.

The proposition below indicates that the maximin ex ante utility function

satisfies several desirable properties.

Proposition 7. If Assumption (U) holds, then Vi is increasing and concave, contin-

uous in the sup-norm topology, and lower semicontinuous in the weak∗ topology.

Proof. See Section 3.7.

3.3 Maximin Expectations Equilibrium and Maximin Core

3.3.1 Existence of MEE and MC

In this section, we define the notions of maximin core (MC) and maximin

expectations equilibrium (MEE).

Given a price vector p, the budget set of agent i is defined as follows:

Bi(p) = {xi ∈ Li :
∑
ω∈Ω

p(ω) · xi(ω) ≤
∑
ω∈Ω

p(ω) · ei(ω)}.

Definition 15. An allocation x is said to be a maximin expectations equilibrium

allocation for the economy E, if there exists a price vector p such that for any agent

i ∈ I,

1. xi maximizes Vi(·) subject to the budget set Bi(p);

2. x is feasible.

The following definition of a core concept in the current context implies that

coalitions of agents cannot cooperate to become better off in terms of MEU.
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Definition 16. A feasible allocation x is said to be a maximin core allocation for

the economy E, if there do not exist a coalition C ⊆ I, C 6= ∅, and an allocation

{yi ∈ Li}i∈C such that

(i) Vi(yi) > Vi(xi) for all i ∈ C;

(ii)
∑

i∈C yi(ω) =
∑

i∈C ei(ω) for all ω ∈ Ω.

The allocation is said to be maximin efficient if C = I.

Remark 34. The notions of maximin expectations equilibrium, maximin core and

maximin efficiency in the above definitions correspond to the concepts of Walrasian

equilibrium, core and efficiency in the standard model. If Bayesian expected utili-

ties, instead of maximin expected utilities, are used in Definition 15, and the private

information measurability assumption is imposed on allocations, then the solution

concept is Walrasian expectations equilibrium defined in Radner (1968, 1982). In

particular, the Walrasian expectations equilibrium is defined as follows: an allocation

x = (x1, . . . , xs) is said to be a Walrasian expectations equilibrium allocation

for the economy E, if xi is an Fi-measurable mapping for each agent i and there exists

a price vector p such that for any agent i ∈ I,

1. xi maximizes agent i’s expected utility subject to the budget set Bi(p);

2.
∑

i∈I xi ≤
∑

i∈I ei.

The following example shows that MEE provides strictly higher efficiency than

the (free disposal) WEE allocations. Furthermore, we show that the MEE is incentive

compatible.
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Example 8. 13 Consider the following economy with one commodity, the agent space

is I = {1, 2} and the state space is Ω = {a, b, c}. The initial endowments and

information partitions of agents are given by

e1 = (5, 5, 0),Π1 = {{a, b}, {c}};

e2 = (5, 0, 5),Π2 = {{a, c}, {b}}.

It is also assumed that for i ∈ I, ui(ω, xi) =
√
xi, which is strictly concave and

monotone in xi, and the priors for both agents are the same: µ({ω}) = 1
3

for every

ω ∈ Ω.

Suppose that agents are both Bayesian expected utility maximizers. It can be

easily checked that there is no (non-free disposal) WEE. If we allow for free disposal,

x1 = (4, 4, 1) and x2 = (4, 1, 4) is a (free disposal) WEE allocation with the equilib-

rium price p(a) = 0 and p(b) = p(c) = 1
2
. However, this allocation is not incentive

compatible (see Example 9 in Section 3.5 for details).

If Pi = Mi for each i, and agents are maximin expected utility maximizers,

then there exists an MEE (y, p), where y1 = (5, 4, 1), y2 = (5, 1, 4) and p(a) = 0,

p(b) = p(c) = 1
2
.

If state b or c realizes, the ex post utility of agent 1 will be the same in both

Bayesian preference setting and maximin preference setting, since x1(b) = y1(b) and

13This example has been analyzed in Glycopantis and Yannelis (2005) in Bayesian pref-
erence setting for the existence and incentive compatibility of Walrasian expectations equi-
librium and private core, and in de Castro, Liu and Yannelis (2015) in maximin preference
setting for the existence and incentive compatibility of maximin core. See also Bhowmik,
Cao and Yannelis (2014).
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x1(c) = y1(c). But if state a occurs, the ex post utility of agent 1 with maximin

preference will be strictly higher than that in the Bayesian preference setting, since

x1(a) = 4 < 5 = y1(a).

Therefore, the maximin preference allows agents to reach higher efficiency.

The following lemma is standard, which shows that the set of maximin expec-

tations equilibrium allocations is included in the set of maximin core allocations.

Lemma 6. The set of MEE allocations is a subset of the MC allocations, and hence

any maximin expectations equilibrium allocation is maximin efficient.

This inclusion can be strict. It is clear that both the Arrow-Debreu ‘state

contingent model’ and the deterministic general equilibrium model are special cases

of our model: if Fi = F = 2Ω for every i ∈ I, then the maximin expected utility

coincides with the Bayesian expected utility and E is indeed the state contingent

model; if Ω is a singleton, then E is the deterministic model. Moreover, it is well

known that in those two models, the set of core allocations could strictly contain the

set of Walrasian equilibrium allocations.

We now turn to the issue of the existence of MEE.

Theorem 13. For an ambiguous asymmetric information economy E, if Assump-

tions (E) and (U) hold, then there exists an MEE.

Proof. See Section 3.7.

Based on Theorem 13 and Lemma 6, it is straightforward to show that the set

of maximin core allocations is also nonempty.
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Corollary 10. Under the conditions of Theorem 13, a maximin core allocation exists.

3.3.2 Equivalence Theorems

For the economy E , Hervés-Beloso, Moreno-Garćıa and Yannelis (2005b) pro-

vided two equivalence results for the Walrasian expectations equilibrium in terms of

the private blocking power of the grand coalition, and Bhowmik and Cao (2013a)

extended this result to an asymmetric information economy whose commodity space

is a Banach lattice. We will follow this approach and characterize the maximin ex-

pectations equilibrium. The two theorems below correspond to Theorem 4.1 and 4.2

of Hervés-Beloso, Moreno-Garćıa and Yannelis (2005b). The proofs are omitted since

the same argument can be followed here.

For an allocation x = {xi}i∈I and a vector a = (a1, · · · , as) ∈ [0, 1]s, consider

the ambiguous asymmetric information economy E(a, x) which is identical with E

except for the random initial endowment of each agent i given by the convex combi-

nation ei(ai, xi) = aiei + (1− ai)xi.

Definition 17. An allocation z is maximin dominated (or maximin blocked by

the grand coalition) in the economy E(a, x) if there exists a feasible allocation y in

E(a, x) such that Vi(yi) > Vi(zi) for every i ∈ I.

Theorem 14. The allocation x is an MEE in E if and only if x is not a maximin

dominated allocation in every economy E(a, x).

Definition 18. A coalition S ⊆ I maximin blocks an allocation x in the sense of

Aubin via y = {yi}i∈S if for all i ∈ S, there is some αi ∈ (0, 1] such that Vi(yi) > Vi(xi)
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and
∑

i∈S αiyi ≤
∑

i∈S αiei. The Aubin maximin core is the set of all feasible

allocations that cannot be maximin blocked by any coalition in the sense of Aubin. An

allocation x is called Aubin non-dominated if x is not maximin blocked by the grand

coalition in the sense of Aubin.

Theorem 15. The allocation x is an MEE in E if and only if x is not a maximin

dominated allocation in the sense of Aubin in the economy E.

3.4 A Continuum Approach

3.4.1 Basics

In this section, we introduce the maximin expectations equilibrium and max-

imin core for an atomless economy. Let the atomless probability space (T, T , λ)

denote the agent space. We define an atomless ambiguous asymmetric infor-

mation economy as follows:

E0 = {(Ω,F); (Ft, ut, et, πt) : t ∈ T}.

An allocation in the continuum economy E0 is a mapping f from T ×Ω to Rl
+ such

that f(·, ω) is integrable for every ω ∈ Ω and f(t, ·) ∈ l∞+ for λ-almost all t ∈ T . The

allocation is said to be feasible if
∫
T
f(t, ω) dλ(t) =

∫
T
e(t, ω) dλ(t) for every ω ∈ Ω.

A coalition in T is a measurable set S ∈ T such that λ(S) > 0. An allocation

f is maximin blocked by a coalition S in the economy E0 if there exists some

g : S × Ω → Rl
+ such that

∫
S
g(t, ω) dλ(t) =

∫
S
e(t, ω) dλ(t) for every ω ∈ Ω, and

Vt(g(t)) > Vt(f(t)) for λ-almost every t ∈ S.
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Definition 19. An allocation f is said to be the maximin core for the economy E0

if it is not maximin blocked by any coalition.

Definition 20. An allocation f is said to be a maximin expectations equilibrium

allocation for the economy E0, if there exists a price vector p such that

1. ft maximizes Vt(·) subject to the budget set Bt(p) for λ-almost all t ∈ T ;

2. f is feasible.

3.4.2 A Continuum Interpretation of the Finite Economy

We associate an atomless economy Ec with the discrete economy E as in

Garćıa-Cutŕın and Hervés-Beloso (1993), Hervés-Beloso, Moreno-Garćıa and Yannelis

(2005a,b) and Bhowmik and Cao (2013a). The space of agents in Ec is the Lebesgue

unit interval (T, T , µ) such that T = ∪si=1Ti, where Ti = [ i−1
s
, i
s
) for i = 1, · · · , s − 1

and Ts = [ s−1
s
, 1]. For each agent t ∈ Ti, set Ft = Fi, πt = πi, ut = ui and et = ei.

Thus, the maximin ex ante utility Vt of agent t is Vi. We refer to Ti as the set of

agents of type i, and

Ec = {(Ω,F); (T,Fi, Vi, ei, πi) : i ∈ I = {1, · · · , s}}

is the economy with the equal treatment property. The allocations in E and

Ec are closely related: for any allocation f in Ec, there is an corresponding allocation

x in E , where xi(ω) = 1
µ(Ti)

∫
Ti
f(t, ω) dµ(t) for all i ∈ I and ω ∈ Ω; conversely, an

allocation x in E can be interpreted as an allocation f in Ec, where f(t, ω) = xi(ω)

for all t ∈ Ti, ω ∈ Ω and i ∈ I. f is said to be a step allocation if f(·, ω) is a constant

function on Ti for any ω ∈ Ω and i ∈ I.
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Analogously to the theorems in Hervés-Beloso, Moreno-Garćıa and Yannelis

(2005a,b), the next proposition shows that the maximin expectations equilibrium can

be considered equivalent in discrete and continuum approaches.

Proposition 8. Suppose that Assumption (U) holds. Then we have the following

properties:

• If (x, p) is an MEE for the economy E, then (f, p) is the MEE for the associated

continuum economy Ec, where f(t, ω) = xi(ω) if t ∈ Ti.

• If (f, p) is an MEE for the economy Ec, then (x, p) is the MEE for the economy

E, where xi(ω) = 1
µ(Ti)

∫
Ti
f(t, ω) dµ for any ω ∈ Ω.

The proof is straightforward, interested readers may refer to Theorem 3.1 of

Hervés-Beloso, Moreno-Garćıa and Yannelis (2005b).

3.4.3 Core Equivalence with A Countable Number of States

The core-Walras equivalence theorem has been recently extended to a Bayesian

asymmetric information economy. Specifically, Einy, Moreno and Shitovitz (2001)

showed that the Walrasian expectations equilibrium is equivalent to the private core

for atomless economies with a finite number of commodities in a free disposal set-

ting, Angeloni and Martins-da-Rocha (2009) completed the discussion by proposing

appropriate conditions which guarantees the core equivalence result in non-free dis-

posal context. Hervés-Beloso, Moreno-Garćıa and Yannelis (2005a,b) and Bhowmik

and Cao (2013a) followed the Debreu- Scarf approach and showed that the set of

Walrasian expectations equilibrium allocations coincides with the private core in the
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asymmetric information economy with the equal treatment property, finitely many

states and infinitely many commodities.

However, all these discussions focus on the asymmetric information economy

with Bayesian expected utilities and a finite state space. Our aim here is to examine

whether this result is still true when agents are ambiguous (have maximin expected

utilities) and the state space is countable. The theorems below show that the core

equivalence theorem holds with either of the following conditions:

1. Maximin expected utility and finitely many states;

2. Maximin expected utility, countably many states and the equal treatment prop-

erty holds.

Theorem 16. Let Ω be finite in the atomless economy E0. Assume that (E) and (U)

hold. Then the set of MC allocations coincides with the set of MEE allocations.

We omit the proof since it is standard, interested readers may check that the

proof of the core equivalence theorem in Hildenbrand (1974) with minor modifications

still holds.

Theorem 17. Suppose Assumptions (E) and (U) hold. Let the step allocation f be

feasible in the associated continuum economy Ec. Then f is an MEE allocation if and

only if f is an MC allocation.

Proof. See Section 3.7.

3.4.4 An Extension of Vind’s Theorem

Hervés-Beloso, Moreno-Garćıa and Yannelis (2005a,b) and Bhowmik and Cao
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(2013a) extended Vind’s theorem to an asymmetric information economy with the

equal treatment property. Sun and Yannelis (2007) established this theorem in an

economy with a continuum of agents and negligible asymmetric information. Below,

we extend this result to the atomless ambiguous asymmetric information economy

with a countable number of states of nature.

Theorem 18. Suppose that Assumptions (E) and (U) hold. If the feasible step allo-

cation f is not in the MC of the associated continuum economy Ec, then for any α,

0 < α < 1, there exists a coalition S such that µ(S) = α, which maximin blocks f .

Proof. See Section 3.7.

3.5 Efficiency and Incentive Compatibility under Ambiguity

In this section, we will define a notion of maximin incentive compatibility, and

then prove that any maximin efficient allocation is maximin incentive compatible.

First, we illustrate the incentive compatibility issue when agents adopt Bayesian

preferences.

Example 9. [Example 8 with Bayesian preference]

Recall Example 8 in Section 3.3.1: the agent space is I = {1, 2} and the state space is

Ω = {a, b, c}. The initial endowments and information partitions of agents are given

by

e1 = (5, 5, 0),Π1 = {{a, b}, {c}};

e2 = (5, 0, 5),Π2 = {{a, c}, {b}}.
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It is also assumed that for i ∈ I, ui(ω, xi) =
√
xi, which is strictly concave and

monotone in xi, and the priors for both agents are the same: µ({ω}) = 1
3

for every

ω ∈ Ω.

Suppose that agents are Bayesian expected utility maximizers, and all allo-

cations are required to be private information measurable. The no-trade allocation

x1 = (5, 5, 0) and x2 = (5, 0, 5) is in the private core and it is incentive compati-

ble. Indeed, it has been shown in Koutsougeras and Yannelis (1993) that private core

allocations are always CBIC provided that the utility functions are monotone and

continuous.

This conclusion is not true in free disposal economies. Glycopantis and Yan-

nelis (2005) pointed out that private core and Walrasian expectations equilibrium al-

locations need not be incentive compatible in an economy with free disposal. In this

example, x1 = (4, 4, 1) and x2 = (4, 1, 4) is a (free disposal) WEE allocation with

the equilibrium price p(a) = 0 and p(b) = p(c) = 1
2
, and hence in the (free disposal)

private core. However, this allocation is not incentive compatible. Indeed, if agent 1

observes {a, b}, he has an incentive to report state c to become better off. Note that

agent 2 cannot distinguish the state a from the state c. In particular, if state a occurs,

agent 1 has an incentive to report state c because his utility is u1(e1(a)+x1(c)−e1(c)),

which is greater than the utility u1(x1(a)) when he truthfully reports state a. That is,

u1(e1(a) + x1(c)− e1(c)) = u1(5 + 1− 0) =
√

6 >
√

4 = u1(x1(a)).

Hence, the free disposal WEE allocation is not incentive compatible.

Note that in the above example, when agent 1 reports {c} and agent 2 reports
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{b}, there will be incompatible reports. To rule out such situations, we make the

following assumption.

Assumption 5 (R). For any i ∈ I and Ei ∈ Πi, ∩i∈IEi = {ω} for some ω ∈ Ω.

Remark 35. This assumption is only needed in this section. Assumption (R) above

guarantees that there are no incompatible reports. The assumption that the intersec-

tion is a singleton set is without loss of generality. If {a, b} ⊆ ∩i∈IEi for two states a

and b, then no one can distinguish these two states and hence they can be combined

as one state.

de Castro and Yannelis (2009) showed that their choice of maximin expected

utility is both sufficient and necessary for the incentive compatibility of maximin

Pareto efficient allocations. In this section, we shall adopt the maximin expected

utility considered in de Castro and Yannelis (2009). That is, as in Remark 1, for any

two allocation xi, yi ∈ Li, agent i prefers the allocation xi to the allocation yi if

∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, xi(ω))]πi(Ei) ≥
∑
Ei∈Πi

[ inf
ω∈Ei

ui(ω, yi(ω))]πi(Ei).

Below, we propose a notion of maximin incentive compatibility.

Definition 21. An allocation x is said to be maximin incentive compatible

(MIC) if the following does not hold:

1. there exists an agent i ∈ I, and two events E1
i , E

2
i ∈ Πi;

2. ei(ω)+xi(b(ω))−ei(b(ω)) ∈ Rl
+ for each ω ∈ E1

i and {b(ω)} = (∩j 6=iΠj(ω))∩E2
i ;

3.

inf
ω1∈E1

i

ui(ω1, yi(ω1)) > inf
ω1∈E1

i

ui(ω1, xi(ω1)),
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where

yi(ω) =


ei(ω) + xi(b(ω))− ei(b(ω)), if ω ∈ E1

i ;

xi(ω), otherwise.

In other words, an allocation is maximin incentive compatible if it is impossible

for any agent to misreport the realized event and become better off. That is, if the

true event is E1
i and agent i reports E2

i , then the allocation yi under the misreported

event E2
i will not make him better off.

In this chapter, we consider a partition model for the information structure.

Alternatively, one can also consider a type model.

Let Ω = Θ =
∏

i∈I Θi, where Θi is the private information set of agent i. For

any state ω ∈ Ω, ω = (θ1, θ2, . . . , θs), let Πi(ω) = {θi} ×Θ−i, where Θ−i is the set of

states for all agents other than i. Then the maximin incentive compatibility can be

described as follows, and Definitions 21 and 22 are equivalent.

Definition 22. An allocation x is MIC if for every agent i and two distinct points

θ̃i, θ̂i in Θi such that for every θ−i ∈ Θ−i,

yθ̃ii (θ̂i, θ−i) = ei(θ̃i) + xi(θ̂i, θ−i)− ei(θ̂i) ∈ Rl
+

and

inf
θ−i∈Θ−i

ui(θ̃i, xi(θ̃i, θ−i)) ≥ inf
θ−i∈Θ−i

ui(θ̃i, y
θ̃i
i (θ̂i, θ−i)).

Thus, an agent i cannot become better off in terms of maximin expected utility

by reporting θ̂i when his true state is θ̃i.

The following theorem shows that any maximin efficient allocation is maximin

incentive compatible.
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Theorem 19. If Assumptions (E), (U) and (R) hold, then any maximin efficient

allocation in E is MIC.

Proof. See Section 3.7.

Corollary 11. Under the conditions of Theorem 19, any MC or MEE allocation is

maximin incentive compatible.

Remark 36. There is a substantial literature on the mechanism design under am-

biguity; see, for example, Bodoh-Creed (2012) and de Castro and Yannelis (2009).

Bodoh-Creed (2012) considers a standard mechanism design environment except that

agents are ambiguity averse with preferences of the maxmin expected utility. In par-

ticular, Bodoh-Creed (2012) assumes that each agent knows his valuation but has

ambiguous beliefs about the distribution of valuations of the other agents which can be

modeled by a convex set of priors, while we consider the particular case that this set

contains all possible priors. There are significant differences between Bodoh-Creed’s

paper and ours. In particular, Bodoh-Creed (2012) focuses on the payoff equivalence

theorem and characterizes the revenue maximizing mechanism, which could be con-

strained efficient (that is, second best efficient). On the contrary, we study the issue

between the first best efficiency and incentive compatibility.

Remark 37. One could extend the result of Angelopoulos and Koutsougeras (2015)

on maximin value allocations to an ambiguous asymmetric information economy with

countably many states. By standard arguments, one could show that the maximin

value allocation is maximin efficient, and therefore, it is maximin incentive compatible
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by the above corollary.

3.6 Concluding Remarks

We presented a new asymmetric information economy framework, where agents

face ambiguity (that is, they are MEU maximizers) and also the state space is not

necessarily finite. This new set up allowed us to derive new core -Walras existence

and equivalence results. It should be noted that contrary to the Bayesian asymmetric

information economy framework, our core and Walrasian equilibrium concepts formu-

lated in an ambiguous asymmetric information economy framework are now incentive

compatible and obviously efficient. For this reason, we believe that our new results

will be useful to other fields in economics.

We would like to conclude by saying that the continuum of states and modeling

perfect competition as in Sun and Yannelis (2007, 2008), Sun, Wu and Yannelis

(2012, 2013) and Qiao, Sun and Zhang (2014), or modeling the idea of informational

smallness (that is, approximate perfect competition) in countable replica economies as

in McLean and Postlewaite (2003), or characterizing cores in economies where agents’

information can be altered by coalitions as in Hervés-Beloso, Meo and Moreno-Garćıa

(2014) in the presence of ambiguity remain open questions and further research in

this direction seems to be needed.
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3.7 Proofs

3.7.1 Proof of Proposition 7

It is clear that Vi is increasing and concave, we first show that it is weak∗ lower

semicontinuous. Suppose that the sequence {zk}k≥0 ⊆ Li, and zk → z0 in the weak∗

topology as k →∞. Fix ε > 0. Since z0 ∈ Li = l∞+ , there exists some positive number

K0 > 0 such that z0(ω, j) < K0 for each 1 ≤ j ≤ l and ω ∈ Ω. By Assumption (U.3),

there exists some K > 0 such that ui(ω, z
0(ω)) ≤ K for any ω ∈ Ω.

Suppose that Πi = {Em}m∈N. Then there exists some m0 sufficiently large

such that πi(∪1≤m≤m0Em) > 1− ε
2K

. Let Ωm0 = ∪1≤m≤m0Em. Then we have

Vi(z
k)− Vi(z0) = inf

µ∈Pi

∑
ω∈Ω

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ω

ui(ω, z
0(ω))µ(ω)

≥ inf
µ∈Pi

∑
ω∈Ωm0

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ωm0

ui(ω, z
0(ω))µ(ω)

− inf
µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
0(ω))µ(ω).

For the third term, we have

inf
µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
0(ω))µ(ω) ≤ Kπi(Ω \ Ωm0) <

ε

2
.

Since zk weak∗ converges to z0 and Ωm0 is finite, zk(ω) converges to z0(ω) for each

ω ∈ Ωm0 . Thus, we have∣∣∣∣∣ inf
µ∈Pi

∑
ω∈Ωm0

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ωm0

ui(ω, z
0(ω))µ(ω)

∣∣∣∣∣ < ε

2

for k sufficiently large. As a result, Vi(z
k)−Vi(z0) > −ε for k sufficiently large, which

implies that Vi(·) is weak∗ lower semicontinuous.
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Next we show that Vi is continuous in the sup-norm topology. The proof is

similar as the argument above.

Suppose that the sequence {zk}k≥0 ⊆ Li, and zk → z0 in the sup-norm topol-

ogy. Then {zk}k≥0 is uniformly bounded by some K0. By Assumption (U.3), there

exists some K > 0 such that ui(ω, z
k(ω)) ≤ K for any k ≥ 0 and ω ∈ Ω. Following

an analogous argument as in the proof of the weak∗ lower semicontinuity, one can

obtain a finite subset Ωm0 such that πi(Ω
m0) > 1− ε

2K
. Then we have

∣∣Vi(zk)− Vi(z0)
∣∣ =

∣∣∣∣∣ inf
µ∈Pi

∑
ω∈Ω

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ω

ui(ω, z
0(ω))µ(ω)

∣∣∣∣∣
≤

∣∣∣∣∣ inf
µ∈Pi

∑
ω∈Ωm0

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ωm0

ui(ω, z
0(ω))µ(ω)

∣∣∣∣∣
+ sup

µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
k(ω))µ(ω) + sup

µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
0(ω))µ(ω).

As in the above argument,

sup
µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
k(ω))µ(ω), sup

µ∈Pi

∑
ω/∈Ωm0

ui(ω, z
0(ω))µ(ω) <

ε

2
;

and ∣∣∣∣∣ inf
µ∈Pi

∑
ω∈Ωm0

ui(ω, z
k(ω))µ(ω)− inf

µ∈Pi

∑
ω∈Ωm0

ui(ω, z
0(ω))µ(ω)

∣∣∣∣∣ < ε

2

for k sufficiently large. As a result,
∣∣Vi(zk)− Vi(z0)

∣∣ ≤ ε for k sufficiently large, which

implies that Vi(·) is continuous in the sup-norm topology.
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3.7.2 Proofs in Sections 3.3 and 3.4

One can view an ambiguous asymmetric information economy E as a complete

information economy Ed = {(l∞+ , Vi, ei) : i ∈ I} with the agent space I.14 That is,

each agent i has the utility function Vi and the infinite dimensional commodity space

l∞+ . Given the initial endowment ei : Ω→ Rl
+ in the economy E , since Ω is countable,

ei can be viewed as a point in the infinite dimensional commodity space l∞+ of the

deterministic economy Ed. By Proposition 7, the utility function Vi is increasing,

concave and norm continuous, and lower semicontinuous in the weak∗ topology.

Given an allocation x = (x1, . . . , xs) ∈ l∞+ and a price p ∈ (l∞)◦, for any agent

i ∈ I,

p · xi =

∫
Ω

xi(ω)p(dω).

An equilibrium in Ed is a pair (x = (x1, . . . , xs), p) with xi ∈ l∞+ for each i ∈ I and

p ∈ (l∞)◦ such that

1. xi ∈ Bi(p) = {y ∈ l∞+ : p · y ≤ p · ei};

2. xi maximizes Vi(·) on the budget set Bi(p);

3.
∑

i∈I xi =
∑

i∈I ei.

It can be easily checked that if p ∈ l1, then the equilibrium (x, p) in the economy Ed

is also an MEE in the ambiguous asymmetric information economy E .

Since Vi is norm continuous, it is Mackey continuous with respect to the

Mackey topology τ(l∞, (l∞)◦) by Corollary 6.23 in Aliprantis and Border (2006).

14Let l∞ and l1 represent the spaces of all bounded sequences and all absolutely summable
sequences, respectively. Denote by (l∞)◦ the topological dual space of l∞.



www.manaraa.com

124

Then the economy Ed has a competitive equilibrium (x∗, p∗) by Propositions 5.2.3

and 5.3.1 in Florenzano (2003), where p∗ ∈ (l∞)◦. Since Vi is lower semicontinuous in

the weak∗ topology, it is also lower semicontinuous in the Mackey topology τ(l∞, l1).

By Theorem 2 in Bewley (1972), we know that p∗ is indeed in l1. One can then

normalize p∗ such that ‖p∗‖1 = 1. Then it is clear that (x∗, p∗) is also a maximin ex-

pectations equilibrium in the ambiguous asymmetric information economy E , which

proves Theorem 13.

If Ec is an atomless ambiguous asymmetric information economy, one can also

view Ec as an atomless complete information economy Ecd as above. Then Theo-

rems 17 and 18 follow from Theorems 3.2 and 3.3 in Hervés-Beloso, Moreno-Garćıa

and Yannelis (2005b).

3.7.3 Proof of Theorem 19

Recall that for any agent i, allocation z ∈ Li and event E ∈ Πi, vi(E, z) =

infω∈E ui(ω, z(ω)). Let {xi}i∈I be a maximin efficient allocation, and assume that it

is not maximin incentive compatible. Then there exist an agent i ∈ I, and two events

E1
i , E

2
i ∈ Πi such that

vi(E
1
i , yi) > vi(E

1
i , xi),

where

yi(ω) =


ei(ω) + xi(b)− ei(b), if ω ∈ E1

i , {b} = (∩j 6=iΠj(ω)) ∩ E2
i ;

xi(ω), otherwise.
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For each j 6= i, define yj : Ω→ Rl
+ as follows:

yj(ω) =


ej(ω) + xj(b)− ej(b), if ω ∈ E1

i , {b} = (∩j 6=iΠj(ω)) ∩ E2
i ;

xj(ω), otherwise.

It can be easily checked that {yi}i∈I is feasible:

1. If ω ∈ E1
i and {b} = (∩j 6=iΠj(ω)) ∩ E2

i , then
∑

j∈I yj(ω) =
∑

j∈I ej(ω) +∑
j∈I xj(b)−

∑
j∈I ej(b) =

∑
j∈I ej(ω), since

∑
j∈I ej(b) =

∑
j∈I xj(b).

2. If ω /∈ E1
i , then

∑
j∈I yj(ω) =

∑
j∈I xj(ω) =

∑
j∈I ej(ω).

We now show that agent i is better off and all other agents are not worse off

if considering the allocation y instead of x.

For agent i, if ω /∈ E1
i , then vi(ω, yi) = vi(ω, xi). In addition, vi(E

1
i , yi) >

vi(E
1
i , xi). Therefore, Vi(yi) =

∑
Ei∈Πi

vi(Ei, yi)πi(Ei) >
∑

Ei∈Πi
vi(Ei, xi)πi(Ei) =

Vi(xi).

For j 6= i and event Ej, if ω ∈ E1
i , then there exists a point b(ω) ∈ Ej∩E2

i such

that ej(b(ω)) = ej(ω) and yj(ω) = ej(ω)+xj(b(ω))−ej(b(ω)) = xj(b(ω)). Notice that

uj(ω, yj(ω)) = uj(ω, xj(b(ω))) = uj(b(ω), xj(b(ω))). If ω /∈ E1
i , then yj(ω) = xj(ω).
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Thus, we have

vj(Ej, yj) = min

(
inf

ω∈Ej ,ω∈E1
i

uj(ω, yj(ω)), inf
ω∈Ej ,ω /∈E1

i

uj(ω, yj(ω))

)
= min

(
inf

ω∈Ej ,ω∈E1
i

uj(b(ω), xj(b(ω))), inf
ω∈Ej ,ω /∈E1

i

uj(ω, xj(ω))

)
= inf

ω∈Ej ,ω /∈E1
i

uj(ω, xj(ω))

≥ inf
ω∈Ej

uj(ω, xj(ω))

= vj(Ej, xj).

Then Vj(yj) =
∑

Ej∈Πj
vj(Ej, yj)πj(Ej) ≥

∑
Ej∈Πj

vj(Ej, xj)πj(Ej) = Vj(xj) for all

j 6= i.

Since εyi → yi as ε→ 1 in (Rl
+)∞ and Vi is continuous, there exists ε ∈ (0, 1)

such that

Vi(εyi) > Vi(xi) for all i ∈ C.

For all ω ∈ Ω, define

zj(ω) =


εyj(ω) if j = i;

yj(ω) + 1−ε
‖I−1‖yi(ω) if j 6= i.

Then Vi(zi) = Vi(εyi) > Vi(xi). Moreover, since ui(ω, ·) is strongly monotone, for all

j 6= i

Vj(zj) = Vj(yj +
1− ε
‖I − 1‖

yi) > Vj(yj) ≥ Vj(xj). (3.2)
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Notice that for every ω ∈ Ω,

∑
i∈I

zi(ω) = εyi(ω) +
∑
j 6=i

yj(ω) + (1− ε)yi(ω)

=
∑
i∈I

yi(ω) =
∑
i∈I

ei(ω).

That is, z is feasible and by (3.2), Vi(zi) > Vi(xi) for any i. Thus, {xi}i∈I is not

maximin efficient, a contradiction.
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